Publications dans la Catégorie B

Mohyiddine, Soltani, Aouag Hichem, and Mouss Mohamed Djamel. 2019. “An integrated framework using VSM, AHP and TOPSIS for simplifying the sustainability improvement process in a complex manufacturing process, ISSN 1726-0531”. Journal of Engineering Design and Technology. Publisher's Version Abstract
Purpose The purpose of this paper is to propose an integrated approach for assessing the sustainability of production and simplifying the improvement tasks in complex manufacturing processes. Design/methodology/approach The proposed approach has been investigated the integration of value stream mapping (VSM), analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS). VSM is used as a basic structure for assessing and improving the sustainability of the manufacturing process. AHP is used for weighting the sustainability indicators and TOPSIS for prioritizing the operations of a manufacturing process regarding the improvement side. Findings The results carried out from this study help the managers’ staff in organizing the improvement phase in the complex manufacturing processes through computing the importance degree of each indicator and determining the most influential operations on the production. Research limitations/implications The major limitations of this paper are that one case study was considered. In addition, to an average set of sustainability indicators that have been treated. Originality/value The novelty of this research is expressed by the development of an extended VSM in complex manufacturing processes. In addition, the proposed approach contributes with a new improvement strategy through integrating the multi-criteria decision approaches with VSM method to solve the complexity of the improvement process from sustainability viewpoints.
Haoues, Mohamed, Mohammed Dahane, and Nadia-Kenza Mouss. 2021. “Capacity Planning With Outsourcing Opportunities Under Reliability And Maintenance Constraints. Status”. International Journal of Industrial and Systems Engineering 37 (3) : 382-409. Publisher's Version Abstract

This paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer's company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.

Mohammed, Haoues, Dahane Mohammed, and Mouss Nadia Kinza. 2019. “Optimization of single outsourcer–single subcontractor outsourcing relationship under reliability and maintenance constraints, ISSN / e-ISSN 1735-5702 / 2251-712X”. Journal of Industrial Engineering International volume Vol 15 (Issue 3) : 395–409. Publisher's Version Abstract
In this paper, we focus on outsourcing activities optimization problem in single period setting. In some situations, capacity planning or outsourcing is a one-time event and can be modeled as a single period problem. The aim of this research is to balance the trade-off between two echelons of a supply chain consisting of a single outsourcer and a single subcontractor. Each part is composed of a failure-prone single machine that produces one product type to satisfy market requirements. The outsourcer’s manufacturing system is not able to satisfy the demand; in this case, outsourcing is allowed to recover the lack of capacity. We consider that the subcontractor can satisfy the demands of strategic clients and rent his machine for the outsourcer under a win–win partnership contract. We assume that the hazard failure rate depends on time and the adopted manufacture rate. When unforeseen failures occur, minimal repairs are implemented. Overhaul can be performed to reduce the degradation effects. Hence, we develop a mathematical model to define a profitability interval so that both parties of supply chain can be considered as winners. We seek to determine the contract parameters that suit both parties (duration, start and end dates, the production and outsourcing rates). Then, we develop an exact algorithm to solve the problem of single period optimization, which offers a better execution time through a series of test problems. Finally, we consider a sensitivity analysis based on outsourcing parameters (cost, periodicities, etc) to analyze their effects on partial costs and individual profit of each part, as well as the total profit generated by the system.
Mohyiddine, Soltani, Aouag Hichem, and Mouss Mohamed Djamel. 2018. “Enhancement of the competitiveness and the financial capability of a manufacturing process through a new Value Stream Mapping approach, ISSN / e-ISSN 1746-6474 / 1746-6482”. International Journal of Productivity and Quality Management. Publisher's Version Abstract
The organisations having a futuristic look and aiming to impose their presence in the industrial field for a long possible term, are seeking for finding solutions linked to controlling their cash flow and assessing their competitiveness performances. Therefore, the purpose of this paper is to propose a new quality and cost value stream mapping for monitoring the costs consumption and assessing the competitiveness of a company. We use three key concepts namely life cycle costing for estimation of the most influential costs on the manufacturing process, the weighted DPMO and Sigma level for assessing the quality level and the competitiveness of the company. Finally, the data obtained are mapped using value stream mapping method for enabling the determination of dysfunctions in the cost and quality context.
Lahcene, Guezouli, Bensakhria Mohamed, and Abdelhamid Samir. 2018. “Efficient Golden-Ball Algorithm Based Clustering to solve the Multi-Depot VRP With Time Windows, ISSN / e-ISSN 1942-3608 / 1942-3594”. International Journal of Applied Evolutionary Computation (IJAEC) Vol 9 (Issue 1) : 1-16. Publisher's Version Abstract
In this article, the authors propose a decision support system which aims to optimize the classical Capacitated Vehicle Routing Problem by considering the existence of multiple available depots and a time window which must not be violated, that they call the Multi-Depot Vehicle Routing Problem with Time Window (MDVRPTW), and with respecting a set of criteria including: schedules requests from clients, the capacity of vehicles. The authors solve this problem by proposing a recently published technique based on soccer concepts, called Golden Ball (GB), with different solution representation from the original one, this technique was designed to solve combinatorial optimization problems, and by embedding a clustering algorithm. Computational results have shown that the approach produces acceptable quality solutions compared to the best previous results in similar problem in terms of generated solutions and processing time. Experimental results prove that the proposed Golden Ball algorithm is efficient and effective to solve the MDVRPTW problem.
Lahcene, Guezouli, and Abdelhamid Samir. 2018. “Multi-objective optimization using genetic algorithm based clustering for multi- depot heterogeneous fleet vehicle routing problem with time windows, ISSN / e-ISSN 1757-585 / 1757-5869”. International Journal of Mathematics in Operational Research Vol 13 (Issue 3) : 30-48. Publisher's Version Abstract
Efficient routing and scheduling of vehicles has significant economic implications for both the public and private sectors. For this purpose, we propose in this study a decision support system which aims to optimise the classical capacitated vehicle routing problem by considering the existence of different vehicle types (with distinct capacities and costs) and multiple available depots, that we call the multi-depot heterogeneous vehicle routing problem with time window (MDHVRPTW) by respecting a set of criteria including: schedules requests from clients, the heterogeneous capacity of vehicles..., and we solve this problem by proposing a new scheme based on the application of the bio-inspired genetic algorithm heuristics and by embedding a clustering algorithm within a VRPTW optimisation frame work, that we will specify later. Computational experiments with the benchmark test instances confirm that our approach produces acceptable quality solutions compared with the best previous results in similar problems in terms of generated solutions and processing time. Experimental results prove that our proposed genetic algorithm is effective in solving the MDHVRPTW problem and hence has a great potential.
  •  
  • 1 of 4
  • »