EQUIPE 4

Benrabah, Mohamed-Elamine, Ouahab Kadri, and Nadia-Kenza Mouss. 2023. “Faulty Detection System Based on SPC and Machine Learning Techniques”. Revue de l’Intelligence Artificielle : 969-977. Publisher's Version Abstract

Starting from a worrying observation, that companies have difficulties controlling the anomalies of their manufacturing processes, in order to have a better control over them, we have realized a case study on the practical data of the Fertial Complex to analyze the main parameters of the ammonia neutralization by nitric acid process. This article proposes a precise diagnostic of this process to detect dysfunction problems affecting the final product. We start with a general diagnosis of the process using the SPC method, this approach is considered an excellent way to monitor and improve the product quality and provides very useful observations that allowed us to detect the parameters that suffer from problems affecting the quality. After the discovery of the parameters incapable to produce the quality required by the standards, we applies two machine learning technologies dedicated to the type of data of these parameters for detected the anomaly, the first technique called The kernel connectivity-based outlier factor (COF) algorithm consists in recording for each object the degree of being an outlier, the second technique called the Isolation Forest, its principle is to establish a forest to facilitate the calculation and description. The results obtained were compared in order to choose which is the best algorithm to monitor and detect the problems of these parameters, we find that the COF method is more efficient than the isolation forest which leads us to rely on this technology in this kind of process in order to avoid passing a bad quality to the customer in future.

Mehannaoui, Raouf, Kinza-Nadia Mouss, and Karima Aksa. 2023. “IoT-based food traceability system: Architecture, technologies, applications, and future trends”. Food Control 145. Publisher's Version Abstract

An effective Food Traceability System (FTS) in a Food Supply Chain (FSC) should adequately provide all necessary information to the consumer(s), meet the requirements of the relevant agencies, and improve food safety as well as consumer confidence. New information and communication technologies are rapidly advancing, especially after the emergence of the Internet of Things (IoT). Consequently, new food traceability systems have become mainly based on IoT. Many studies have been conducted on food traceability. They mainly focused on the practical implementation and theoretical concepts. Accordingly, various definitions, technologies, and principles have been proposed. The “traceability” concept has been defined in several ways and each new definition has tried to generalize its previous ones. Nevertheless, no standard definition has been reached. Furthermore, the architecture of IoT-based food traceability systems has not yet been standardized. Similarly, used technologies in this field have not been yet well classified. This article presents an analysis of the existing definitions of food traceability, and thus proposes a new one that aims to be simpler, general, and encompassing than the previous ones. We also propose, through this article, a new architecture for IoT-based food traceability systems as well as a new classification of technologies used in this context. We do not miss discussing the applications of different technologies and future trends in the field of IoT-based food traceability systems. Mainly, an FTS can make use of three types of technologies: Identification and Monitoring Technologies (IMT), Communication Technologies (CT), and Data Management Technologies (DMT). Improving a food traceability system requires the use of the best new technologies. There is a variety of promising technologies today to enhance FTS, such as fifth-generation (5G) mobile communication systems and distributed ledger technology (DLT).

In this study, we investigate a production planning problem in hybrid manufacturing remanufacturing production system. The objective is the determine the best mix between the manufacturing of new products, and the remanufacturing of recovered products, based on economic and environmental considerations. It consists to determine the best manufacturing and remanufacturing plans to minimising the total economic cost (start-up and production costs of new and remanufactured products, storage costs of new and returned products and disposal costs) and the carbon emissions (new products, remanufactured products and disposed products). The hybrid system consists of a set of machines used to produce new products and remanufactured products of different grades (qualities). We assume that remanufacturing is more environmentally efficient, because it allows to reduce the disposal of used products. A multi-objective mathematical model is developed, and a non dominated sorting genetic algorithm (NSGA-II) based approach is proposed. Numerical experience is presented to study the impact of carbon emissions generated by new, remanufactured and disposed products, over a production horizon of several periods.

Bensakhria, Mohamed, and Samir Abdelhamid. 2021. “A Hybrid Methodology based on heuristic algorithms for a production distribution system with routing decisions”. . BizInfo (Blace) Journal of Economics, Management and Informatics 12 (2) : 1-22. Publisher's Version Abstract

In this paper, we address the integration of a two-level supply chain with multiple items. This two-level production-distribution system features a capacitated production facility supplying several retailers located in the same region. If production does occur, this process incurs a fixed setup cost and unit production costs. Besides, deliveries are made from the plant to the retailers by a limited number of capacitated vehicles, routing costs incurred. This work aims to implement a minimization solution that reduces the total costs in both the production facility and retailers. The methodology adopted based on a hybrid heuristic, greedy and genetic algorithm uses strong formulation to provide a suitable solution of a guaranteed quality that is as good or better than those provided by the MIP optimizer. The results demonstrate that the proposed heuristics are effective and performs impressively in terms of computational efficiency and solution quality.

Benfriha, Abdennour -Ilyas, et al. 2021. “Dynamic planning design of three level distribution network with horizontal and vertical exchange”. Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central ware. Abstract

 Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central warehouse, three distribution centres and six wholesalers. Each of them faces a random demand. In order to optimise the inventory management in the distribution network, we first propose to make a horizontal cooperation between actors of the same level in the form of product exchange; then we propose a second approach based on vertical-horizontal cooperation. Both approaches are modelled as a MIP model and solved using the CPLEX solver. The objective of this study is to analyse the performance in terms of costs, quantities in stock and customer satisfaction.

Abdelhadi, Adel, Leila-Hayet Mouss, and Ouahab Kadri. 2020. “HYBRID MULTI-AGENT AND IMMUNE ALGORITHM APPROACH TO HYBRID FLOW SHOPS SCHEDULING WITH SDST”. ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING 18 (3). Publisher's Version Abstract

The existing literature on process scheduling issues have either ignored installation times or assumed that installation times on all machines is free by association with the task sequence. This working arrangement addresses hybrid flow shop scheduling issues under which there are sequence-dependent configuration times referred to as HFS with SDST. This family of production systems are common in industries such as biological printed circuit boards, metallurgy and vehicles and automobiles making. Due to the increasing complexity of industrialized sectors, simple planning systems have failed to create a realistic industrial scheduling. Therefore, a hybrid multi-agent and immune algorithm can be used as an alternative approach to solve complex problems and produce an efficient industrial schedule in a timely manner. We propose in this paper a multi-agent and immune hybrid algorithms for scheduling HFS with SDST. The findings of this paper suggest that the proposed algorithm outperforms some of the existing ones including PSO (particle swarm optimization), GA (Genetic Algorithm), LSA (Local Search Algorithm) and NEHH (Nawaz Enscore and Ham).

  •  
  • 1 of 7
  • »