Equipe 4

2023
Benrabah, Mohamed-Elamine, Ouahab Kadri, and Nadia-Kenza Mouss. 2023. “Faulty Detection System Based on SPC and Machine Learning Techniques”. Revue de l’Intelligence Artificielle : 969-977. Publisher's Version Abstract

Starting from a worrying observation, that companies have difficulties controlling the anomalies of their manufacturing processes, in order to have a better control over them, we have realized a case study on the practical data of the Fertial Complex to analyze the main parameters of the ammonia neutralization by nitric acid process. This article proposes a precise diagnostic of this process to detect dysfunction problems affecting the final product. We start with a general diagnosis of the process using the SPC method, this approach is considered an excellent way to monitor and improve the product quality and provides very useful observations that allowed us to detect the parameters that suffer from problems affecting the quality. After the discovery of the parameters incapable to produce the quality required by the standards, we applies two machine learning technologies dedicated to the type of data of these parameters for detected the anomaly, the first technique called The kernel connectivity-based outlier factor (COF) algorithm consists in recording for each object the degree of being an outlier, the second technique called the Isolation Forest, its principle is to establish a forest to facilitate the calculation and description. The results obtained were compared in order to choose which is the best algorithm to monitor and detect the problems of these parameters, we find that the COF method is more efficient than the isolation forest which leads us to rely on this technology in this kind of process in order to avoid passing a bad quality to the customer in future.

Mehannaoui, Raouf, Kinza-Nadia Mouss, and Karima Aksa. 2023. “IoT-based food traceability system: Architecture, technologies, applications, and future trends”. Food Control 145. Publisher's Version Abstract

An effective Food Traceability System (FTS) in a Food Supply Chain (FSC) should adequately provide all necessary information to the consumer(s), meet the requirements of the relevant agencies, and improve food safety as well as consumer confidence. New information and communication technologies are rapidly advancing, especially after the emergence of the Internet of Things (IoT). Consequently, new food traceability systems have become mainly based on IoT. Many studies have been conducted on food traceability. They mainly focused on the practical implementation and theoretical concepts. Accordingly, various definitions, technologies, and principles have been proposed. The “traceability” concept has been defined in several ways and each new definition has tried to generalize its previous ones. Nevertheless, no standard definition has been reached. Furthermore, the architecture of IoT-based food traceability systems has not yet been standardized. Similarly, used technologies in this field have not been yet well classified. This article presents an analysis of the existing definitions of food traceability, and thus proposes a new one that aims to be simpler, general, and encompassing than the previous ones. We also propose, through this article, a new architecture for IoT-based food traceability systems as well as a new classification of technologies used in this context. We do not miss discussing the applications of different technologies and future trends in the field of IoT-based food traceability systems. Mainly, an FTS can make use of three types of technologies: Identification and Monitoring Technologies (IMT), Communication Technologies (CT), and Data Management Technologies (DMT). Improving a food traceability system requires the use of the best new technologies. There is a variety of promising technologies today to enhance FTS, such as fifth-generation (5G) mobile communication systems and distributed ledger technology (DLT).

2022

In this study, we investigate a production planning problem in hybrid manufacturing remanufacturing production system. The objective is the determine the best mix between the manufacturing of new products, and the remanufacturing of recovered products, based on economic and environmental considerations. It consists to determine the best manufacturing and remanufacturing plans to minimising the total economic cost (start-up and production costs of new and remanufactured products, storage costs of new and returned products and disposal costs) and the carbon emissions (new products, remanufactured products and disposed products). The hybrid system consists of a set of machines used to produce new products and remanufactured products of different grades (qualities). We assume that remanufacturing is more environmentally efficient, because it allows to reduce the disposal of used products. A multi-objective mathematical model is developed, and a non dominated sorting genetic algorithm (NSGA-II) based approach is proposed. Numerical experience is presented to study the impact of carbon emissions generated by new, remanufactured and disposed products, over a production horizon of several periods.

2021
Bensakhria, Mohamed, and Samir Abdelhamid. 2021. “A Hybrid Methodology based on heuristic algorithms for a production distribution system with routing decisions”. . BizInfo (Blace) Journal of Economics, Management and Informatics 12 (2) : 1-22. Publisher's Version Abstract

In this paper, we address the integration of a two-level supply chain with multiple items. This two-level production-distribution system features a capacitated production facility supplying several retailers located in the same region. If production does occur, this process incurs a fixed setup cost and unit production costs. Besides, deliveries are made from the plant to the retailers by a limited number of capacitated vehicles, routing costs incurred. This work aims to implement a minimization solution that reduces the total costs in both the production facility and retailers. The methodology adopted based on a hybrid heuristic, greedy and genetic algorithm uses strong formulation to provide a suitable solution of a guaranteed quality that is as good or better than those provided by the MIP optimizer. The results demonstrate that the proposed heuristics are effective and performs impressively in terms of computational efficiency and solution quality.

Benfriha, Abdennour -Ilyas, et al. 2021. “Dynamic planning design of three level distribution network with horizontal and vertical exchange”. Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central ware. Abstract

 Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central warehouse, three distribution centres and six wholesalers. Each of them faces a random demand. In order to optimise the inventory management in the distribution network, we first propose to make a horizontal cooperation between actors of the same level in the form of product exchange; then we propose a second approach based on vertical-horizontal cooperation. Both approaches are modelled as a MIP model and solved using the CPLEX solver. The objective of this study is to analyse the performance in terms of costs, quantities in stock and customer satisfaction.

Haoues, Mohamed, Mohammed Dahane, and Nadia-Kenza Mouss. 2021. “Capacity Planning With Outsourcing Opportunities Under Reliability And Maintenance Constraints. Status”. International Journal of Industrial and Systems Engineering 37 (3) : 382-409. Publisher's Version Abstract

This paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer's company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.

2020
Abdelhadi, Adel, Leila-Hayet Mouss, and Ouahab Kadri. 2020. “HYBRID MULTI-AGENT AND IMMUNE ALGORITHM APPROACH TO HYBRID FLOW SHOPS SCHEDULING WITH SDST”. ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING 18 (3). Publisher's Version Abstract

The existing literature on process scheduling issues have either ignored installation times or assumed that installation times on all machines is free by association with the task sequence. This working arrangement addresses hybrid flow shop scheduling issues under which there are sequence-dependent configuration times referred to as HFS with SDST. This family of production systems are common in industries such as biological printed circuit boards, metallurgy and vehicles and automobiles making. Due to the increasing complexity of industrialized sectors, simple planning systems have failed to create a realistic industrial scheduling. Therefore, a hybrid multi-agent and immune algorithm can be used as an alternative approach to solve complex problems and produce an efficient industrial schedule in a timely manner. We propose in this paper a multi-agent and immune hybrid algorithms for scheduling HFS with SDST. The findings of this paper suggest that the proposed algorithm outperforms some of the existing ones including PSO (particle swarm optimization), GA (Genetic Algorithm), LSA (Local Search Algorithm) and NEHH (Nawaz Enscore and Ham).

Bellal, Salah-Eddine, et al. 2020. “User behaviour-based approach to define mobility devices needs of disabled person in Algeria: a questionnaire study”. Disability and Rehabilitation: Assistive Technology 17 (4) : 453-461. Publisher's Version Abstract

This article showcases the adaptability of existing mobility devices for the Algerian disabled population. It aims to develop a behavior model of disabled Algerian persons through (1) development of a theoretical model based on literature review and (2) improvement of this model by using local collected data from our developed questionnaire.

Bencherif, Fateh, and Leila-Hayet Mouss. 2020. “Complex network to enhance characterization analysis in modelling product development process”. African Journal of Science, Technology, Innovation and Development 21 (7) : 797-811. Publisher's Version Abstract

Nowadays, successful and innovative product development is highly correlated with the company's success and reason for existence. A development process is a major factor influencing cost, timing and quality of product development. It requires additional attention to decisions made about programme, budget, technical and market risks. In this paper a product development process model is proposed in an innovation context and strategy framework of design process and project management. The process modelling is complex network theory based, to improve characterization analysis for product development process modelling. Required concepts for complex process are established to build product development mathematical model, and provide an overview of key definitions and complex networks advanced tools. Finally, a case study for an Algerian electric generator company is carried out to prove the practicality of the proposed model.

2019
Haoues, Mohammed, Mohammed Dahane, and Nadia-Kinza Mouss. 2019. “Optimization of single outsourcer–single subcontractor outsourcing relationship under reliability and maintenance constraints”. Journal of Industrial Engineering International 15 : pages395–409. Publisher's Version Abstract

In this paper, we focus on outsourcing activities optimization problem in single period setting. In some situations, capacity planning or outsourcing is a one-time event and can be modeled as a single period problem. The aim of this research is to balance the trade-off between two echelons of a supply chain consisting of a single outsourcer and a single subcontractor. Each part is composed of a failure-prone single machine that produces one product type to satisfy market requirements. The outsourcer’s manufacturing system is not able to satisfy the demand; in this case, outsourcing is allowed to recover the lack of capacity. We consider that the subcontractor can satisfy the demands of strategic clients and rent his machine for the outsourcer under a win–win partnership contract. We assume that the hazard failure rate depends on time and the adopted manufacture rate. When unforeseen failures occur, minimal repairs are implemented. Overhaul can be performed to reduce the degradation effects. Hence, we develop a mathematical model to define a profitability interval so that both parties of supply chain can be considered as winners. We seek to determine the contract parameters that suit both parties (duration, start and end dates, the production and outsourcing rates). Then, we develop an exact algorithm to solve the problem of single period optimization, which offers a better execution time through a series of test problems. Finally, we consider a sensitivity analysis based on outsourcing parameters (cost, periodicities, etc) to analyze their effects on partial costs and individual profit of each part, as well as the total profit generated by the system.

Haoues, Mohammed, Mohammed Dahane, and Nadia-Kenza Mouss. 2019. “Outsourcing optimization in two-echelon supply chain network under integrated production-maintenance constraints”. Journal of Intelligent Manufacturing 30 : 701–725. Publisher's Version Abstract

In this paper, we study a two-echelon supply chain network consisting of multi-outsourcers and multi-subcontractors. Each one is composed of a failure-prone production unit that produces a single product to fulfil market demands with variable production rates. Sometimes the manufacturing systems are not able to satisfy demand; in this case, outsourcing option is adopted to improve the limited in-house production capacity. The outsourcing is not justified by the production lack of manufacturing systems, but is also considered for the costs minimization issues. In the considered problem, we assume that the failure rate is dependent on the time and production rate. Preventive maintenance activities can be conducted to mitigate the deterioration effects, and minimal repairs are performed when unplanned failures occurs. We consider that the production cost depends on the rate of the machine utilization. The aim of this research is to propose a joint policy based on a mixed integer programming formulation to balance the trade-off between two-echelon of supply chain. We seek to assist outsourcers to determine the integrated in-house/ outsourcing, and maintenance plans, and the subcontractors to determine the integrated production-maintenance plans so that the benefit of the supply chain is maximized over a finite planning horizon. We develop an improved optimization procedure based on the genetic algorithms, and we discuss and conduct computational experiments to study the managerial insights for the developed framework.

Mohyiddine, Soltani, Aouag Hichem, and Mouss Mohamed Djamel. 2019. “An integrated framework using VSM, AHP and TOPSIS for simplifying the sustainability improvement process in a complex manufacturing process, ISSN 1726-0531”. Journal of Engineering Design and Technology. Publisher's Version Abstract
Purpose The purpose of this paper is to propose an integrated approach for assessing the sustainability of production and simplifying the improvement tasks in complex manufacturing processes. Design/methodology/approach The proposed approach has been investigated the integration of value stream mapping (VSM), analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS). VSM is used as a basic structure for assessing and improving the sustainability of the manufacturing process. AHP is used for weighting the sustainability indicators and TOPSIS for prioritizing the operations of a manufacturing process regarding the improvement side. Findings The results carried out from this study help the managers’ staff in organizing the improvement phase in the complex manufacturing processes through computing the importance degree of each indicator and determining the most influential operations on the production. Research limitations/implications The major limitations of this paper are that one case study was considered. In addition, to an average set of sustainability indicators that have been treated. Originality/value The novelty of this research is expressed by the development of an extended VSM in complex manufacturing processes. In addition, the proposed approach contributes with a new improvement strategy through integrating the multi-criteria decision approaches with VSM method to solve the complexity of the improvement process from sustainability viewpoints.
Mohammed, Haoues, Dahane Mohammed, and Mouss Nadia Kinza. 2019. “Optimization of single outsourcer–single subcontractor outsourcing relationship under reliability and maintenance constraints, ISSN / e-ISSN 1735-5702 / 2251-712X”. Journal of Industrial Engineering International volume Vol 15 (Issue 3) : 395–409. Publisher's Version Abstract
In this paper, we focus on outsourcing activities optimization problem in single period setting. In some situations, capacity planning or outsourcing is a one-time event and can be modeled as a single period problem. The aim of this research is to balance the trade-off between two echelons of a supply chain consisting of a single outsourcer and a single subcontractor. Each part is composed of a failure-prone single machine that produces one product type to satisfy market requirements. The outsourcer’s manufacturing system is not able to satisfy the demand; in this case, outsourcing is allowed to recover the lack of capacity. We consider that the subcontractor can satisfy the demands of strategic clients and rent his machine for the outsourcer under a win–win partnership contract. We assume that the hazard failure rate depends on time and the adopted manufacture rate. When unforeseen failures occur, minimal repairs are implemented. Overhaul can be performed to reduce the degradation effects. Hence, we develop a mathematical model to define a profitability interval so that both parties of supply chain can be considered as winners. We seek to determine the contract parameters that suit both parties (duration, start and end dates, the production and outsourcing rates). Then, we develop an exact algorithm to solve the problem of single period optimization, which offers a better execution time through a series of test problems. Finally, we consider a sensitivity analysis based on outsourcing parameters (cost, periodicities, etc) to analyze their effects on partial costs and individual profit of each part, as well as the total profit generated by the system.
2018
Mohyiddine, Soltani, Aouag Hichem, and Mouss Mohamed Djamel. 2018. “Enhancement of the competitiveness and the financial capability of a manufacturing process through a new Value Stream Mapping approach, ISSN / e-ISSN 1746-6474 / 1746-6482”. International Journal of Productivity and Quality Management. Publisher's Version Abstract
The organisations having a futuristic look and aiming to impose their presence in the industrial field for a long possible term, are seeking for finding solutions linked to controlling their cash flow and assessing their competitiveness performances. Therefore, the purpose of this paper is to propose a new quality and cost value stream mapping for monitoring the costs consumption and assessing the competitiveness of a company. We use three key concepts namely life cycle costing for estimation of the most influential costs on the manufacturing process, the weighted DPMO and Sigma level for assessing the quality level and the competitiveness of the company. Finally, the data obtained are mapped using value stream mapping method for enabling the determination of dysfunctions in the cost and quality context.
Lahcene, Guezouli, Bensakhria Mohamed, and Abdelhamid Samir. 2018. “Efficient Golden-Ball Algorithm Based Clustering to solve the Multi-Depot VRP With Time Windows, ISSN / e-ISSN 1942-3608 / 1942-3594”. International Journal of Applied Evolutionary Computation (IJAEC) Vol 9 (Issue 1) : 1-16. Publisher's Version Abstract
In this article, the authors propose a decision support system which aims to optimize the classical Capacitated Vehicle Routing Problem by considering the existence of multiple available depots and a time window which must not be violated, that they call the Multi-Depot Vehicle Routing Problem with Time Window (MDVRPTW), and with respecting a set of criteria including: schedules requests from clients, the capacity of vehicles. The authors solve this problem by proposing a recently published technique based on soccer concepts, called Golden Ball (GB), with different solution representation from the original one, this technique was designed to solve combinatorial optimization problems, and by embedding a clustering algorithm. Computational results have shown that the approach produces acceptable quality solutions compared to the best previous results in similar problem in terms of generated solutions and processing time. Experimental results prove that the proposed Golden Ball algorithm is efficient and effective to solve the MDVRPTW problem.
Lahcene, Guezouli, and Abdelhamid Samir. 2018. “Multi-objective optimization using genetic algorithm based clustering for multi- depot heterogeneous fleet vehicle routing problem with time windows, ISSN / e-ISSN 1757-585 / 1757-5869”. International Journal of Mathematics in Operational Research Vol 13 (Issue 3) : 30-48. Publisher's Version Abstract
Efficient routing and scheduling of vehicles has significant economic implications for both the public and private sectors. For this purpose, we propose in this study a decision support system which aims to optimise the classical capacitated vehicle routing problem by considering the existence of different vehicle types (with distinct capacities and costs) and multiple available depots, that we call the multi-depot heterogeneous vehicle routing problem with time window (MDHVRPTW) by respecting a set of criteria including: schedules requests from clients, the heterogeneous capacity of vehicles..., and we solve this problem by proposing a new scheme based on the application of the bio-inspired genetic algorithm heuristics and by embedding a clustering algorithm within a VRPTW optimisation frame work, that we will specify later. Computational experiments with the benchmark test instances confirm that our approach produces acceptable quality solutions compared with the best previous results in similar problems in terms of generated solutions and processing time. Experimental results prove that our proposed genetic algorithm is effective in solving the MDHVRPTW problem and hence has a great potential.
In this paper, we consider the integration of production, inventory and distribution decisions in a supply chain composed of one production facility supplying several retailers located in the same region. The supplier is far from the retailers compared to the distance between retailers. Thus, the traveling cost of each vehicle from the supplier to the region is assumed to be fixed and there is a fixed delivery (service) cost for each visited retailer. The objective is to minimize the sum of the costs at the production facility and at the retailers. The problem is more general than the One-Warehouse Multi-Retailer problem and is a special case of the Production Routing Problem. Five heuristics based on a Genetic Algorithm are proposed to solve the problem. In particular, three of them include the resolution of a Mixed Integer Program as subproblem to generate new individuals in the population. The results show that the heuristics can find optimal solutions for small and medium size instances. On large instances, the gaps obtained by the heuristics in less than 300 s are better than the ones obtained by a standard solver in two hours.
2017
Lahcene, Guezouli, and Abdelhamid Samir. 2017. “A New Multi-Criteria Solving Procedure for Multi-Depot FSM-VRP with Time Window, ISSN / e-ISSN 2155-4153 / 2155-4161”. International Journal of Applied Industrial Engineering (IJAIE) Vol 4 (Issue 1) : 1-18. Publisher's Version Abstract
One of the most important combinatorial optimization problems is the transport problem, which has been associated with many variants such as the HVRP and dynamic problem. The authors propose in this study a decision support system which aims to optimize the classical Capacitated Vehicle Routing Problem by considering the existence of different vehicle types (with distinct capacities and costs) and multiple available depots, that the authors call the Multi-Depot HVRPTW by respecting a set of criteria including: schedules requests from clients, the heterogeneous capacity of vehicles..., and the authors solve this problem by proposing a new scheme based on a genetic algorithm heuristics that they will specify later. Computational experiments with the benchmark test instances confirm that their approach produces acceptable quality solutions compared with previous results in similar problems in terms of generated solutions and processing time. Experimental results prove that the method of genetic algorithm heuristics is effective in solving the MDHVRPTW problem and hence has a great potential.
Mawloud, Titah, et al. 2017. “Externalising and reusing of tacit knowledge in manufacturing task, ISSN / e-ISSN 1743-8268 / 1743-8276”. International Journal of Knowledge Management Studies Vol 8 (N° 3/4) : 351-374. Publisher's Version Abstract
In this paper, we present the application of knowledge engineering and externalisation of tacit knowledge in manufacturing industry, in order to improve the performance of a production system and save the knowledge capital of the company. The main aim of this study is to propose a knowledge model for manufacturing task combining common knowledge acquisition and design support (CommonKADS) and methodology for acquisition of tacit knowledge (MACTAK) methodologies, using two different knowledge base modelling based on two categories: (i) ontology and (ii) expert knowledge base. In that purpose, we suggest a process dedicated to industrial manufacturing, allowing to capitalise knowledge by: (1) Externalisation of tacit knowledge by MACTAK-methodology in industrial processes, (2) using knowledge engineering method; CommonKADS methodology, (3) Formalizing and modelling the domain knowledge using ontology and inference model, (4) presenting the implementation tool to support the knowledge model and (5) reusing the manufacturing knowledge model in decision support systems. The three pillars of methodology are: the externalisation process, Knowledge representation technique and quality tools. The proposed model is applied in manufacturing monitoring systems.
2016
Mise en œuvre des outils de l’amélioration continue avec cas pratiques, ISBN-13: 978-3-8416-6281-1  ISBN-10: 3841662811
La recherche de l'excellence industrielle est devenue aujourd'hui une condition essentielle de survie pour l'entreprise. Dans un environnement exigeant et concurrentiel, les entreprises doivent donc chercher en permanence à renforcer leur compétitivité. La réalisation de cet objectif nécessite le recours aux outils d'amélioration continue qui visent à booster la compétitivité et la performance des entreprises par le tryptique : réduction des couts, amélioration de la qualité et diminution des délais. Cet ouvrage se fixe pour objectif d'appliquer l'un des outils de l'amélioration continue, en l'occurrence la démarche six sigma, aux processus de fabrication d'une cimenterie algérienne (SCIMAT) et d'une entreprise de fabrication de bouteilles à gaz (B.A.G).

Pages