Publications Internationales

Bourmada A, Bilami A. Cross-layer energy efficient protocol for QoS provisioning in wireless sensor network. International Journal of Systems, Control and Communications. 2017;8 (3).Abstract

Ensuring (QoS) in wireless sensor networks (WSNs) is a challenging issue due to the lack of resources and energy exhausting of sensor nodes. In this paper we propose a new QoS aware routing protocol for multi-hop wireless sensor networks based on cross-layer interaction between the network, MAC and physical layers. At physical layer, a link quality estimator is studied for the purpose of evaluating link quality. At MAC layer, a differentiated services mechanism is used to distinguish between real time and non-real time packets and to allocate more channel resources for real time traffic; TDMA slots also have been modified to allocate more and earlier slots to real time packets. At network layer, a routing path selection algorithm is introduced for QoS optimisation. Simulation results show that our proposed protocol improves network's performances in terms of energy efficiency and QoS.

Barka K, Bilami A, Gourdache S. MONet: A framework for self-adaptive energy-aware middleware for dynamic wireless sensor network. International Journal of Pervasive Computing and Communications. 2017.Abstract

The purpose of this paper is to ensure power efficiency in wireless sensor networks (WSNs) through a new framework-oriented middleware, based on a biologically inspired mechanism that uses an evolutionary multi-objective optimization algorithm. The authors call this middleware framework multi-objective optimization for wireless sensor networks (MONet).

Naidja M, Bilami A. A dynamic self-organising heterogeneous routing protocol for clustered WSNs. International Journal of Wireless and Mobile Computing. 2017;12 (2).Abstract

Many self-adaptation routing schemes have been proposed for sensor networks. The most relevant of them consider a hierarchical topology and aim to meet energy conservation and QoS requirements in a homogeneous environment. In such networks, one specific algorithm is commonly applied by all nodes inside clusters. Contrarily, in this paper, we propose a heterogeneous routing by applying different strategies according to specific parameters at the same time inside different clusters. Moreover, each cluster can adopt different strategies at different moments under different conditions. This approach leads to a new self-adaptation protocol based on heterogeneity of the routing process in a multi-hop clustering WSN. The proposal uses a set of mechanisms that have been adopted in well-known protocols (HEEP, APTEEN, LEACH, PEGASIS, etc.) taking into account their strengths and weaknesses. Simulations under NS2 show that our proposal, based on heterogeneous routing protocol, prolongs the network lifetime with different ratios compared to HEEP, PEGASIS and others.

Sedrati M, Benyahia A. Multipath Routing to Improve Quality of Service for Video Streaming Over Mobile Ad Hoc Networks. Wireless Personal Communications. 2017;99 (2) :999–1013.Abstract

Providing quality of service (QoS) for real-time multimedia applications such as video streaming in mobile ad hoc networks (MANETs) is an important challenge. MANETs are characterized by lack of fixed infrastructure, dynamic topology, and limited resources that make more difficult multimedia applications transport and run on this networks. To overcome this challenge, video coding techniques combined to multiple routing paths (multipath) is a promising technique for supporting transmission of multiple video streams with appropriate QoS over mobile ad hoc networks. In this paper, firstly, many issues and different techniques for video streaming over MANET have been reviewed and secondly two multi paths routing protocols (M-AODV and MDSDV) have been evaluated in order to improve QoS for real-time multimedia applications. Results show that none of these two protocols is better than the other. In certain situations (throughput and load network with high mobility) is M-AODV but in others (network load and reliability for large-scale network) is MDSDV protocol which displays good performance. It is also noted that these two protocols provide between acceptable and good quality and a small jitter regardless of nodes number in medium mobility.

Hidoussi F, Toral-Cruz H, Boubiche DE, Martínez-Peláez R, Alvarado PV, Barbosa R, Freddy C. PEAL: Power Efficient and Adaptive LatencyHierarchical Routing Protocol for Cluster-Based WSN. Wireless Personal Communications . 2017;96 (7) :4929–4945.Abstract

In wireless sensor networks, one of the most important constraints is the low power consumption requirement. For that reason, several hierarchical or cluster-based routing methods have been proposed to provide an efficient way to save energy during communication. However, their main challenge is to have efficient mechanisms to achieve the trade-off between increasing the network lifetime and accomplishing acceptable transmission latency. In this paper, we propose a novel protocol for cluster-based wireless sensor networks called PEAL (Power Efficient and Adaptive Latency). Our simulation results show that PEAL can extend the network lifetime about 47% compared to the classic protocol LEACH (Low-Energy Adaptive Clustering Hierarchy) and introduces an acceptable transmission latency compared to the energy conservation gain.

Boubiche DE, Boubiche S, Toral-Cruz H, Pathan A-SK, Bilami A, Athmani S. SDAW: secure data aggregation watermarking-based scheme in homogeneous WSNs. Telecommunication Systems. 2016;62 (2) :277–288.Abstract

Redundant data retransmission problem in wireless sensor networks (WSNs) can be eliminated using the data aggregation process which combines similar data to reduce the resource-consumption and consequently, saves energy during data transmission. In the recent days, many researchers have focused on securing this paradigm despite the constraints it imposes such as the limited resources. Most of the solutions proposed to secure the data aggregation process in WSNs are essentially based on the use of encryption keys to protect data during their transmission in the network. Indeed, the key generation and distribution mechanisms involve additional computation costs and consume more of energy. Considering this, in this paper, we propose a new security mechanism to secure data aggregation in WSNs called SDAW (secure data aggregation watermarking-based scheme in homogeneous WSNs). Our mechanism aims to secure the data aggregation process while saving energy. For this, the mechanism uses a lightweight fragile watermarking technique without encryption to insure the authentication and the integrity of the sensed data while saving the energy. The links between the sensor nodes and the aggregation nodes, and also the links between the aggregation nodes and the base station are secured by using the watermarking mechanism.

Boubiche S, Boubiche DE, Bilami A, Toral-Cruz H. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks. Sensors. 2016;16 (4) : 525.Abstract

Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. 

Pages