Catégorie A

Hamouid K, Adi K. Secure and reliable certification management scheme for large-scale MANETs based on a distributed anonymous authority. Peer-to-Peer Networking and Applications. 2019;12 (5) :1137–1155.Abstract

This paper proposes a compromise-tolerant (t,n)-threshold certification management scheme for MANETs. Our solution allows to mitigate the impact of compromised nodes that participate in the certification service. In our design, certification management is achieved anonymously by an Anonymous Certification Authority (ACA). The latter is fully distributed into multiple disjointed coalitions of nodes whose structure is made hidden. This prevents an adversary from taking the control of the ACA by arbitrarily compromising t or more nodes. In other words, our proposal enhances the compromise-tolerance to more than the threshold number t of nodes without breaking down the whole certification system. As a result, our scheme requires a very smaller threshold than traditional schemes, which improves considerably the service availability. The experimental study shows a clear advantage over traditional threshold-based certification schemes by ensuring a significant positive compromise between security and availability of certification service.

Belferdi W, Behloul A, Noui L. A Bayer pattern-based fragile watermarking scheme for color image tamper detection and restoration. Multidimensional Systems and Signal Processing. 2019;30 (3) :1093–1112.Abstract

The security of multimedia documents becomes an urgent need, especially with the increasing image falsifications provided by the easy access and use of image manipulation tools. Hence, usage of image authentication techniques fulfills this need. In this paper, we propose an effective self-embedding fragile watermarking scheme for color images tamper detection and restoration. To decrease the capacity of insertion, a Bayer pattern is used to reduce the color host image into a gray-level watermark, to further improve the security Torus Automorphism permutation is used to scramble the gray-level watermark. In our algorithm, three copies of the watermark are inserted over three components (R, G, and B channels) of the color host image, providing a high probability of detection accuracy and recovery if one copy is destroyed. In the tamper detection process, a majority voting technique is used to determine the legitimacy of the image and recover the tampered regions after interpolating the extracted gray-level watermark. Using our proposed method, tampering rate can achieve 25% with a high visual quality of recovered image and PSNR values greater than 34 (dB). Experimental results demonstrate that the proposed method affords three major properties: the high quality of watermarked image, the sensitive tamper detection and high localization accuracy besides the high-quality of recovered image.

Saadna Y, Behloul A, Mezzoudj S. Speed limit sign detection and recognition system using SVM and MNIST datasets. Neural Computing and Applications. 2019;31 :5005–5015.Abstract

This article presents a computer vision system for real-time detection and robust recognition of speed limit signs, specially designed for intelligent vehicles. First, a new segmentation method is proposed to segment the image, and the CHT transformation (circle hog transform) is used to detect circles. Then, a new method based on local binary patterns is proposed to filter segmented images in order to reduce false alarms. In the classification phase, a cascading architecture of two linear support vector machines is proposed. The first is trained on the GTSRB dataset to decide whether the detected region is a speed limit sign or not, and the second is trained on the MNIST dataset to recognize the sign numbers. The system achieves a classification recall of 99.81% with a precision of 99.08% on the GTSRB dataset; in addition, the system is also tested on the BTSD and STS datasets, and it achieves a classification recall of 99.39% and 98.82% with a precision of 99.05% and 98.78%, respectively, within a processing time of 11.22 ms.

Boubechal I, Rachid S, Benzid R. A Generalized and Parallelized SSIM-Based Multilevel Thresholding Algorithm. Applied Artificial Intelligence. 2019;33 (14) :1266-1289.Abstract

Multilevel thresholding is a widely used technique to perform image segmentation. It consists of dividing an input image into several distinct regions by finding the optimal thresholds according to a certain objective function. In this work, we generalize the use of the SSIM quality measure as an objective function to solve the multilevel thresholding problem using empirically tuned swarm intelligence algorithms. The experimental study we have conducted shows that our approach, producing near-exact solutions, is more effective compared to the state-of-the-art methods. Moreover, we show that the computation complexity has been significantly reduced by adopting a shared-memory parallel programming paradigm for all the algorithms we have implemented.

Saliha M, Ali B, Rachid S. Towards large-scale face-based race classification on spark framework. Multimedia Tools and Applications . 2019;78 (18) :26729–26746.Abstract

Recently, the identification of an individual race has become an important research topic in face recognition systems, especially in large-scale face images. In this paper, we propose a new large-scale race classification method which combines Local Binary Pattern (LBP) and Logistic Regression (LR) on Spark framework. LBP is used to extract features from facial images, while spark’s logistic regression is used as a classifier to improve the accuracy and speedup the classification system. The race recognition method is performed on Spark framework to process, in a parallel way, a large scale of data. The evaluation of our proposed method has been performed on two large face image datasets CAS-PEAL and Color FERET. Two major races were considered for this work, including Asian and Non-Asian races. As a result, we achieve the highest race classification accuracy (99.99%) compared to Linear SVM, Naive Bayesian (NB), Random Forest(RF), and Decision Tree (DT) Spark’s classifiers. Our method is compared against different state-of-the-art methods on race classification, the obtained results show that our approach is more efficient in terms of accuracy and processing time.

Baroudi T, Seghir R, Loechner V. Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts. ACM Transactions on Architecture and Code Optimization (TACO). 2017;14 (4).Abstract

Over the past few years, multicore systems have become increasingly powerful and thereby very useful in high-performance computing. However, many applications, such as some linear algebra algorithms, still cannot take full advantage of these systems. This is mainly due to the shortage of optimization techniques dealing with irregular control structures. In particular, the well-known polyhedral model fails to optimize loop nests whose bounds and/or array references are not affine functions. This is more likely to occur when handling sparse matrices in their packed formats. In this article, we propose using 2d-packed layouts and simple affine transformations to enable optimization of triangular and banded matrix operations. The benefit of our proposal is shown through an experimental study over a set of linear algebra benchmarks.