Catégorie A+

Athmani S, Bilami A, Boubiche DE. EDAK: An Efficient Dynamic Authentication and Key Management Mechanism for heterogeneous WSNs. Future Generation Computer Systems. 2019;92 :789-799.Abstract

Securing the network communication represents one of the most important challenges in wireless sensor networks. The key distribution problem has been widely discussed in classical wireless sensor networks contrarily to heterogeneous ones. HWSNs (Heterogeneous Wireless Sensor Networks) have optimized the network capability and opened new security opportunities by introducing high resource capacity sensor nodes in the network. In this paper, an efficient dynamic authentication and key Management scheme is proposed for heterogeneous WSN. The main idea is to provide a single lightweight protocol for both authentication and key establishment while optimizing the security level. The key distribution algorithm is based on preexisting information to generate dynamic keys and does not require any secure channel and sharing phase which improves the security, energy efficiency and reduces the memory consumption. Experimental results have confirmed the performances of our mechanism compared to some of the existing security protocols.

Benayache A, Bilami A, Barkat S, Lorenz P, Taleb H. MsM: A microservice middleware for smart WSN-based IoT application. Journal of Network and Computer Applications. 2019;144 :138-154.Abstract

Actually, wireless sensor networks represent a substantial part in IoT. However, their limitation requires a special consideration in IoT applications. For their integration with the internet, it is necessary to adapt such networks using different middleware, with taking into account various challenges such as heterogeneity and interoperability.

Previously Service Oriented Architecture (SOA) was the suitable design, but with a better practice, a new design called microservice becomes the leader due to its high performance and its suitability for IoT applications.

In this paper, we first survey the most important middleware that have been proposed to handle WSN through IoT. Also, we discuss the most crucial microservices that handle different integration factors by making them supported by the proposed middleware. Our proposal is inspired from artificial neural network architecture to allow dynamic service interaction; it supports unlimited services with a regard to various device capabilities separately of the cloud technologies. Moreover, the evaluation of our design clearly shows that our middleware allows a lightweight WSN integration with IoT regarding to their limitations and requirements.

Boubiche D-E, Pathan A-SK, Lloret J, Zhou H, Hong S, Amin SO, Feki MA. Advanced Industrial Wireless Sensor Networks and Intelligent IoT. IEEE Communications Magazine . 2018;56 (2) :14 - 15.Abstract

Examines the market for wireless sensor networks in the era and expansion of the Internet of Things. Over the past decade, the fast expansion of the Internet of Things (IoT) paradigm and wireless communication technologies has raised many scientific and engineering challenges that call for ingenious research efforts from both academia and industry. The IoT paradigm now covers several technologies beyond RFID and wireless sensor networks (WSNs). In fact, the number of potential application fields has already exceeded expectations. According to Cisco IBSG, more than 50 billion devices are expected to be connected to the Internet by 2020, with around 20 percent from the industry sector. Therefore, integrating the IoT concept and industrial WSNs (IWSNs) is an attractive choice for industrial processes, which may optimize operational efficiency, automation, maintenance, and rationalization. Moreover, IoT ensures large-scale interconnection between machines, computers, and people, enabling intelligent industrial operations. This emergent technological evolution has led to what has become the Industrial IoT (IIoT). IIoT will bring promising opportunities, along with new challenges.