Despite technological advancements, chemical and process industries are still prone to accidents due to their complexity and hazardous installations. These accidents lead to significant losses that represent economic losses and most importantly human losses. Risk management is one of the appropriate tools to guarantee the safe operations of these plants. Risk analysis is an important part of risk management, it consists of different methods such as Fault tree, Bow-tie, and Bayesian network. The latter has been widely applied for risk analysis purposes due to its flexible and dynamic structure. Bayesian networks approaches have shown a significant increase in their application as shown by in the publication in this field. This paper summarizes the result of a literature review performed on Bayesian network approaches adopted to conduct risk assessments, safety and risk analyses. Different application domains are analysed (i.e. accident modelling, maintenance area, fault diagnosis) in chemical and process industries from the year 2006 to 2018. Furthermore, the advantages of different types of Bayesian networks are presented.
In this paper we analyze a problem of inventory management in a multi-levels multi-products distribution network with three echelon, the studied system consists of a central warehouse and three distribution centers identified by their location zones where each center is connected to a wholesaler group that serve the retailers of his region, which in turn feeds the customers of the regions located in the Algerian territory. The aim of this study is to apply a collaboration between the different actors of the same level in a form of an exchange of products, the exchange can occurs only when the actual demand is being received, in order to study the impact of product exchanges in the distribution networks and its influence on the total costs of the logistics chain from the central warehouse to the delivery to the final customer.
In this work, we introduce the objective of minimizing energy consumption in a job shop scheduling problem with unidirectional transport constraint. In this problem, it is planned to process a set of N jobs (parts) on four machines. The Movement of jobs between these machines is in a single direction that is mean all the parts follow the same direction of movement. Indeed, the energy consumption in this type of problem depends; on the one hand on the speed of the machines processing the jobs and on the other hand on the speed of the means of transport. To solve this optimization problem, we have proposed a metaheuristic method that allows us to find a better sequencing of jobs in order to minimize the cost generated by energy consumption. Several simulations have been studied and the results obtained demonstrate the effectiveness of the proposed approach.
In this paper, we consider a parallel machine scheduling problem with non-renewable resources. Each job consumes several components and must be processed in one stage composed of identical parallel machines. Resources availability operations, jobs assignment and sequencing are considered and optimized simultaneously. In order to find an optimal solution, an exact method is applied to optimize the total completion time. Due to the problem complexity and prohibitive computational time to obtain an exact solution, a metaheuristic approach based genetic algorithm is proposed and several heuristics are adapted to solve it. Moreover, the impact of non-renewable resources procurement methods on production scheduling is analyzed. The system performances are evaluated in terms of measures such as the solution quality and the execution time. The simulation results show that the proposed genetic algorithm gives the same results as the exact method for small instances and performs the best compared to heuristics for medium and large instances.
It is always difficult to identify the most recent works that have been published, especially those published in recent years, due to delays in putting publications online, citations indexe, etc. Scientometry offers to researchers various concepts, models and techniques that can be applied to knowledge management (KM) in order to explore its foundations, its state, its intellectual core, and its potential future development. To this end, we have developed a scientometric KM framework to calculate the scientometric indexes related to a query introduced in the Scopus database, to facilitate research and monitoring of productivity and collaboration between the authors of KM in particular and also the dissemination of knowledge. The works between 2014 and 2019 are taken, the industry of services was omitted. It might help the decision makers and researchers to optimize their time and efforts. We used Unified Modeling Language (UML) to translate the development ideas of the scientometric framework structure into diagrams, and Delphi 7 to calculate the indexes and ensure other operations of research (about: articles, their authors, conferences, etc). This framework is only valid for Excel files extracted from Scopus or similar format. Finally, the relation between KM and industry 4.0 was established on found articles in Scopus.
The era of Industry 4.0 has already begun, however, several improvements should be achieved concerning this revolution. Data mining is one of the modest and efficient tools. Based on a specific query entered in Scopus, related to Industry 4.0, data mining (DM) and logistics, selected documents were studied and analyzed. A brief background of Industry 4.0 and DM are presented. A generic analysis showed that the attentiveness for the cited subject area by countries, universities, authors and especially companies and manufacturers increased through the years. Content analysis reveals that the improvement in quality of the technologies used in manufacturing was noticed, concluding that DM would give Industry 4.0 a leap forward, yet research is dealing with several challenges.