EQUIPE 3

The growth of manufacturing industries and the huge competitive environment forced manufacturing organizations to develop advanced improvement strategies and enhance their sustainability performance. The integration of sustainable Manufacturing in industrial operations leads to enhanced process performances through the reduction of wastes, cost, and environmental impacts and satisfies ergonomic conditions. For this reason, various firms have adopted sustainable manufacturing concepts to enhance their performances and hold a prestigious competitive position. The purpose of this research is to develop an integrated Pythagorean Fuzzy MCDM model to enhance the application process of the conventional Lean Manufacturing approach (LM). Firstly, an extended Value Steam Mapping is proposed to assess the sustainability of the manufacturing process and identify the causes of waste from a sustainability viewpoint. Secondly, Pythagorean Fuzzy Decision-Making Trial And Evaluation Laboratory (PF-DEMATEL) is employed to analyze the interrelationship among the identified. Thirdly, Pythagorean Fuzzy Technique for Order Preference by Similarity to Ideal Solution (PF-TOPSIS) is introduced to prioritize a set of solutions in order to overcome the investigated causes and improve the durability of the manufacturing operations. Finally, sensitivity analysis is conduced to assess the effectiveness of the obtained results. The proposed method has several attractive features. It can address the drawbacks of the conventional LM and enhance its analysis and improvement tasks. However, the proposed approach offers an advanced application process for Lean Manufacturing in a sustainability context. Additionally, the suggested strategy facilitates the leaders to assess the current state of the manufacturing processes and select the appropriate solutions for successful sustainability implementation. The validity of the proposed approach was investigated in a real case study. The results confirm its effectiveness and indicate that using MCDM approaches in LM application process offers a consistent and flexible demarche for sustainable manufacturing implementation.

Aouag, Hichem, and Mohyiddine Soltani. 2023. “Improvement of Lean Manufacturing approach based on MCDM techniques for sustainable manufacturing”. International Journal of Manufacturing Research 18 (1). Publisher's Version Abstract

Over the past few decades, Lean Manufacturing (LM) has been the pinnacle of strategies applied for cost and waste reduction. However as the search for competitive advantage and production growth continues, there is a growing consciousness towards environmental preservation. With this consideration in mind this research investigates and applies Value Stream Mapping (VSM) techniques to aid in reducing environmental impacts of manufacturing companies. The research is based on empirical observation within the Chassis weld plant of Company X. The observation focuses on the weld operations and utilizes the cross member line of Auxiliary Cross as a point of study. Using various measuring instruments to capture the emissions emitted by the weld and service equipment, data is collected. The data is thereafter visualised via an Environmental Value Stream Map (EVSM) using a 7-step method. It was found that the total lead-time to build an Auxiliary Cross equates to 16.70 minutes and during this process is emitted. It was additionally found that the UPR x LWR stage of the process indicated both the highest cycle time and carbon emissions emitted and provides a starting point for investigation on emission reduction activity. The EVSM aids in the development of a method that allows quick and comprehensive analysis of energy and material flows. The results of this research are important to practitioners and academics as it provides an extension and further capability of Lean Manufacturing tools. Additionally, the EVSM provides a gateway into realising environmental benefits and sustainable manufacturing through Lean Manufacturing.

Aouag, Hichem, Mohyeddine Soltani, and Mohyeddine Soltani. 2022. “Benchmarking framework for sustainable manufacturing based MCDM techniques Benchmarking”. Benchmarking: An International Journal 29 (1). Publisher's Version Abstract

Purpose

The purpose of this paper is to develop a model for sustainable manufacturing by adopting a combined approach using AHP, fuzzy TOPSIS and fuzzy EDAS methods. The proposed model aims to identify and prioritize the sustainable factors and technical requirements that help in improving the sustainability of manufacturing processes.

Design/methodology/approach

The proposed approach integrates both AHP, Fuzzy EDAS and Fuzzy TOPSIS. AHP method is used to generate the weights of the sustainable factors. Fuzzy EDAS and Fuzzy TOPSIS are applied to rank and determine the application priority of a set of improvement approaches. The ranks carried out from each MCDM approach is assessed by computing the spearman's correlation coefficient.

Findings

The results reveal the proposed model is efficient in sustainable factors and the technical requirements prioritizing. In addition, the results carried out from this study indicate the high efficiency of AHP, Fuzzy EDAS and Fuzzy TOPSIS in decision making. Besides, the results indicate that the model provides a useable methodology for managers' staff to select the desirable sustainable factors and technical requirements for sustainable manufacturing.

Research limitations/implications

The main limitation of this paper is that the proposed approach investigates an average number of factors and technical requirements.

Originality/value

This paper investigates an integrated MCDM approach for sustainable factors and technical requirements prioritization. In addition, the presented work pointed out that AHP, Fuzzy EDAS and Fuzzy TOPSIS approach can manipulate several conflict attributes in a sustainable manufacturing context.

Soltani, Mohyiddine, Hichem Aouag, and Mohammed-Djamel Mouss. 2022. “A multiple criteria decision-making improvement strategy in complex manufacturing processes”. International Journal of Operational Research 45 (2). Publisher's Version Abstract

The purpose of this paper is to propose an improvement strategy based on multi-criteria decision making approaches, including fuzzy analytic hierarchy process (AHP), preference ranking organisation method for enrichment evaluation II (PROMETHEE) and višekriterijumsko kompromisno rangiranje (VIKOR) for the objective of simplifying and organising the improvement process in complex manufacturing processes. Firstly, the proposed strategy started with the selection of decision makers', such as company leaders, to determine performance indicators. Then fuzzy AHP is used to quantify the weight of each defined indicators. Finally, the weights carried out from fuzzy AHP approach are used as input in VIKOR and PROMETHE II to rank the operations according to their improvement priority. The results obtained from each outranking method are compared and the best method is determined.

Sahraoui, Khaoula, Samia Aitouche, and Karima Aksa. 2022. “Deep learning in Logistics: systematic review”. International Journal of Logistics Systems and Management. Publisher's Version Abstract

Logistics is one of the main tactics that countries and businesses are improving in order to increase profits. Another prominent theme in today’s logistics is emerging technologies. Today’s developments in logistics and industry are how to profit from collected and accessible data to use it in various processes such as decision making, production plan, logistics delivery programming, and so on, and more specifically deep learning methods. The aim of this paper is to identify the various applications of deep learning in logistics through a systematic literature review. A set of research questions had been identified to be answered by this article.

Aksa, Karima, et al. 2021. “Developing a Web Platform for the Management of the Predictive Maintenance in Smart Factories”. Wireless Personal Communications 119 : pages1469–1497. Publisher's Version Abstract

Industry 4.0 is a tsunami that will invade the whole world. The real challenge of the future factories requires a high degree of reliability both in machinery and equipment. Thereupon, shifting the rudder towards new trends is an inevitable obligation in this fourth industrial revolution where the maintenance system has radically changed to a new one called predictive maintenance 4.0 (PdM 4.0). This latter is used to avoid predicted problems of machines and increase their lifespan taking into account that if machines have not any predicted problem, they will never be checked. However, in order to get successful prediction of any kind of problems, minimizing energy and resources consumption along with saving costs, this PdM 4.0 needs many new emerging technologies such as the internet of things infrastructure, collection and distribution of data from different smart sensors, analyzing/interpreting a huge amount of data using machine/deep learning…etc. This paper is devoted to present the industry 4.0 and its specific technologies used to ameliorate the existing predictive maintenance strategy. An example is given via a web platform to get a clear idea of how PdM 4.0 is applied in smart factories.

  •  
  • 1 of 6
  • »