Purpose
The purpose of this paper is to develop a model for sustainable manufacturing by adopting a combined approach using AHP, fuzzy TOPSIS and fuzzy EDAS methods. The proposed model aims to identify and prioritize the sustainable factors and technical requirements that help in improving the sustainability of manufacturing processes.
Design/methodology/approach
The proposed approach integrates both AHP, Fuzzy EDAS and Fuzzy TOPSIS. AHP method is used to generate the weights of the sustainable factors. Fuzzy EDAS and Fuzzy TOPSIS are applied to rank and determine the application priority of a set of improvement approaches. The ranks carried out from each MCDM approach is assessed by computing the spearman's correlation coefficient.
Findings
The results reveal the proposed model is efficient in sustainable factors and the technical requirements prioritizing. In addition, the results carried out from this study indicate the high efficiency of AHP, Fuzzy EDAS and Fuzzy TOPSIS in decision making. Besides, the results indicate that the model provides a useable methodology for managers' staff to select the desirable sustainable factors and technical requirements for sustainable manufacturing.
Research limitations/implications
The main limitation of this paper is that the proposed approach investigates an average number of factors and technical requirements.
Originality/value
This paper investigates an integrated MCDM approach for sustainable factors and technical requirements prioritization. In addition, the presented work pointed out that AHP, Fuzzy EDAS and Fuzzy TOPSIS approach can manipulate several conflict attributes in a sustainable manufacturing context.