Equipe 1 RET

Dahmane, Hachi, et al. 2019. “Composite Material Characterization using Eddy Current by 3D FEM Associated with Iterative Technique, ISSN 2119-0275”. Advanced Electromagnetics Journal (AEMJ) volume 8 (N°1). Publisher's Version Abstract
In this paper, an iterative technique, employing the T formulation associated with the finite element method, based on Maxwell's equations and the Biot-savart law, is used for analyzing the density of eddy currents in composite carbon fiber reinforced polymer (CFRP) materials. For this purpose, a code has been developed for solving an electromagnetic 3D non-destructive evaluation problem. This latter permits the characterization of this CFRP and determinate of fibers orientation using the impedance variation which is implanted in polar diagram. Firstly, the obtained results are compared with those of the analytical model. This comparison reveals a high concordance which proves the validity of the proposed method. Secondly, three different applications are shown for illustrating the characterization of unidirectional, bidirectional and multidirectional piece using a rectangular coil plotted in normalized impedance diagram.
This paper presents a new modeling approach of eddy current nondestructive evaluation systems containing magnetic materials. Originally, the proposed model is based on coupled circuits principle and the notion of equivalent current density. In order to make the model homogenous, we consider the current density as a state variable since this density is compatible with the representation of the magnetisation by equivalent currents. By introducing the fictitious electric conductivity approach, the sensor impedance is expressed according to magnetic tube or plate characteristics such as electric conductivity and magnetic permeability. An excellent concordance is achieved by comparing the calculated results to those of analytical ones. Regarding the mesh simplicity and the fast calculation, this method is very adapted for the resolution of the inverse problems for real time evaluation of the properties of magnetic materials.
This article presents a study of a Multi-coils circular eddy current non-destructive testing sensor for determining the fibers orientation as well as the detection of defect in multidirectional carbon fibers reinforced polymer (CFRP). The developed sensor contains 16 rectangular coils connected in series and supplied by a single-phase sinusoidal source. This sensor allows the annulations of the mechanical rotation of the conventional sensors and it permits to reduce the inspection procedure duration. The electromagnetic phenomena are calculated by using 3D finite element method (FEM) based on the electromagnetic AV-A formulation. Finally, the Multi-coils circular sensor responses are analyzed through polar diagrams of the impedance variation, where the defect is taken into consideration. A great concordance between the obtained results and those of literatures has been noticed. The provided results show that the proposed sensor allows an efficient characterization of multidirectional CFRP and detection of defects in different layers.
Abdelhak, Abdou, et al. 2018. “Influence of Conductive Pollution on Eddy Current Sensor, ISSN / e-ISSN 1061-8309 / 1608-3385”. Russian Journal of Nondestructive Testing volume 54 (N°3) : pp. 192–202. Publisher's Version Abstract
This paper presents a study of a surface crack detection in which the volume is filled by conductive substances due to the polluting environment. Hence, this investigation demonstrates by numerical simulation that electric conductivity is a crucial property that has to be added to the other defect geometrical characteristics in order to complete the developed models. Consequently, introducing the tolerance in percent in the measured impedance is necessary in some conditions. So, the obtained results demonstrate that the signal amplitude passes from 0 to 78% of the maximal amplitude when the defect conductivity rises from 0 to 0.5 Ms/m. On the other hand, the relative difference of the resistance partincreases according to defect volume. For example, for a defect of 0.3 MS/m, the relative difference of the resistance varies from 52 to 62% of the maximal amplitude when the defect depth varies from 0.5 to 2.25 mm. These results can be exploited to show the effect of the conductive substances occupying the crack volume. In fact, the controller using EC-NDT technique must take into consideration the presence of conductive polluting elements in the crack volume. So, this condition becomes primordial and necessary according to the degree and nature of pollution.
This paper proposes a contactless method for the identification of the electrical conductivity tensor of a carbon fiber composite materials plate using a rotating magnetic field and multi-coil eddy current sensor. This sensor consists of identical rectangular multi-coil, excited by two-phase sinusoidal current source in order to generate a rotating magnetic field and to avoid the mechanical rotation of the sensor. The fibers orientations, the longitudinal and transverse conductivities in each ply of carbon fiber composite material plate were directly determined with analysis of the impedance variation of each coil as function of its angular position. The inversion process is based on the use of artificial neural networks. The direct calculation associated with artificial neural networks makes use of 3D time-harmonic finite element method based on the AV–A formulation.
Tarek, Bouchala, Benhadda Nabil, and Bachir Abdelhadi. 2016. “Exciting Coil Optimization Criteria for Eddy Current Detection of Small Cracks under Fastener Head, ISSN 1582-4594”. Journal of Electrical Engineering volume 16 (N°4) : pp. 474-480. Publisher's Version Abstract
The aim of this paper consists of presenting optimization criteria of coil dimensions and the exciting field frequency in order to improving eddy current probe sensitivity for small and deep cracks under fasteners. To accomplish this task, we have studied the influence of coil inner radius, coil height and exciting frequency on probe sensitivity. Then, an algorithmic searching technique is applied to determine the optimal values of the previous parameters. Hence, the obtained results have revealed that the optimum inner radius corresponds exactly to the fastener head outer radius. Furthermore, it has been noticed that as well as the coil height is reduced while keeping the same number of turns, the probes sensitivity increases. Indeed, the use of stacking flat micro-coils is well adapted. In addition, the calculation of the optimum values of the frequency demonstrate that this parameter depend relatively on the defect position, its radial and vertical depth.
  •  
  • 1 of 2
  • »