Publications

Ramadan, F.Z, et al. 2021. “Highly efficient ACdTS kesterite solar cell based on a new photovoltaic material”. Journal of Physics and Chemistry of Solids 161. Publisher's Version Abstract

The quasiparticle band structures and optical properties of ACdTS kesterite are investigated here on the basis of first-principles calculations, including the many-body effects theory, by using the GW plus Bethe-Salpeter equation. There were significant GW-quasiparticle corrections, over 0.9 eV, to the GGA-Kohn-Sham band gap. Our calculations also show that ACdTS kesterite had a small binding energy, exhibited optical absorption in the visible region, high minority carrier mobility, and large diffusion in length, rendering this material a promising candidate for solar cells. Based on these findings, we designed and implemented an ACdTS absorber in a thin-film solar cell (TFSC) structure. The new kesterite solar cell has a high efficiency of 11.6% with a low deficit in the output voltage. Moreover, a strategic combination between the particle swarm optimization approach and the ACdTS TFSC decorated with periodic nanowires is proposed to obtain significantly improved photovoltaic characteristics. The optimized design identifies a new pathway for a high conversion efficiency of 14%, far surpassing that provided by the conventional TFSC kesterite.

Cost-effective multispectral photodetectors (PDs) exhibiting a high UV-Visible-NIR photoresponse offer an avenue for developing environmental monitoring devices, imaging sensors, object discrimination, and optical links. However, PDs based on a single semiconductor as light-sensitive layer are unable to provide broadband photodetection properties. In this work, a new PD device based on ZnO-ZnS Microstructured Composite (MC) which achieves a high UV-Visible-NIR photoresponse is demonstrated. The ZnO-ZnS MC is elaborated by combining vacuum thermal evaporation technique and a suitable annealing process. Scanning Electron Microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and UV-Vis-NIR spectroscopy were used to elucidate the morphological, structural and optical properties of the prepared sample. It was demonstrated that the ZnO-ZnS MC can be useful to enhance the visible absorbance efficiency by promoting efficient light-scattering effects. It is revealed that the prepared UV-Vis-NIR PD offers a low dark current of 5 nA, a high ION/IOFF ratio of 78 dB and an enhanced responsivity in UV, visible and NIR ranges. The proposed multispectral PD demonstrates a high ION/IOFF current ratio under self-powered working regime. Therefore, the proposed ZnO-ZnS MC is believed to provide new insights in developing efficient, self-powered and low-cost multispectral PDs for high-performance optoelectronic systems.

    Guenifi, Naima, Balmukund Rahi Shiromani, and G Boussahla. 2021. “Impact of Dielectric Engineering on Analog/RF and Linearity Performance of Double Gate Tunnel FET”. International Journal of Nanoelectronics and Materials. Publisher's Version Abstract

    Tunnel FETisone of thealternativedevicefor low power electronics having steep subthreshold swing and lower leakage current than conventional MOSFET. In this research work, we have implemented the idea of high -k gate dielectric ondouble gate Tunnel FET, DG-TFETfor improvement of device features.An extensive investigation for the analog/RF and linearity feature of DG-TFET has been donehere for low power circuit and system development.Several essential analog/RF and linearity parameters like transconductance(gm), transconductance generation factor (gm/IDS) its high-order derivatives (gm2, gm3), cut-off frequency (fT), gain band width product (GBW), transconductance generation factor (gm/IDS) has been investigated for low power RF applications.The VIP2, VIP3, IMD3, IIP3, distortion characteristics (HD2, HD3), 1- dB the compression point, delay and power delay product performancehave also been throughly studied.It has been observed that the device features discussed for circuitry applications are found to be sensitiveto of gate materials, design configuration and input signals.

    Guenifi, Naima, and Balmukund Rahi Shiromani. 2021. “Low Power Circuit and System Design Hierarchy and Thermal Reliability of Tunnel Field Effect Transistor”. Silicon 14 : 3233–3243. Publisher's Version Abstract

    Tunnel FET is one of the promising devices advocated as a replacement of conventional MOSFET to be used for low power applications. Temperature is an important factor affecting the performance of circuits or system, so temperature associated reliability issues of double gate Tunnel FET and its impact on essential circuit design components have been addressed here. The temperature reliability investigation is based on double gate Tunnel FET, containing Si1-xGe x /Si, source/channel and HfO2 high-k gate dielectric material. During investigation, it has been found that at high temperature application range ~ 300 K - to - 600 K,the Tunnel FET device design parameters exhibit weak temperature dependency with switching current (ION), while the off-state current (IOFF) is slightly varying ~10−17A/μm-to-10−10A/μm. In addition, the impact of temperature on various device design element such as VTH(i.e.,switching voltage),on-current (ION), off-current (IOFF), switching ratio (ION/IOFF) and average subthreshold slope (i.e., SSavg), ambipolar current (IAMB) have been done in this research work.The essential circuit design components for digital and analog/RF applications, such as current amplification factor(gm) and its derivative (gm’),the C-V components of device design, Cgg, Cgd and Cgs, cut - off frequency (ƒT) and gain band width (GBW) product have deeply investigated. In conclusion, the obtained results show that the designed double gate Tunnel FET device configuration and its circuit design components are suitable for ultra-low power circuit,system applications and reliable for hazardous temperature environment.

    Latrous, Ahmed Redha, et al. 2021. “Performance Enhancement in CZTS Solar Cells by SCAPS-1D”. International Journal of Thin Film Science and Technology 10 (2). Publisher's Version Abstract

    The development of CZTS-based solar cells is limited by two factors, the low open circuit voltage and the conversion efficiency. This is why, in this study, the impact of Cu2ZnSnS4 (CZTS) absorber thin layer parameters on the performance of the proposed MoS2/CZTS/CdS/ZnO heterostructure is simulated by the standard software SCAPS-1D. The improving output performances of this structure; the open circuit voltage (Voc), the short circuit current density (Jsc), the fill factor (FF) and the efficiency (h) are obtained by varying the absorber layer thickness, acceptor carrier concentration NA and taking into account the effect of the electron work function of the back metal contact. The optimized cell provides an energy conversion efficiency of 15.23% (Voc = 0.99 V, Jsc = 21.89 mA/cm2, FF = 69.79%) for an optimal thickness of 2 μm, a doping of 1×1016 cm-3. Performance enhancement of the proposed solar cell is subject to the back metal contact, the optimal simulated value of 5.7 eV of which represents that of the Platinum’s work function Pt. The interest of this simulation makes it possible to adjust the solar cells dimensions, optimize the absorbent layers doping, choose appropriately the back metal contact and therefore help to considerably reduce the various recombination phenomena as well as the secondary phases.

    Latrous, Ahmed Redha, et al. 2021. “Conduction Band Offset Effect on the Cu2ZnSnS4 Solar Cells Performance”. Annales de Chimie - Science des Matériaux 45 (6) : 431-437 . Publisher's Version Abstract

    Among the causes of the degradation of the performance of kesterite-based solar cells is the wrong choice of the n-type buffer layer which has direct repercussions on the unfavorable band alignment, the conduction band offset (CBO) at the interface of the absorber/buffer junction which is one of the major causes of lower VOC. In this work, the effect of CBO at the interface of the junction (CZTS/Cd(1-x)ZnxS) as a function of the x composition of Zn with respect to (Zn+Cd) is studied using the SCAPS-1D simulator package. The obtained results show that the performance of the solar cells reaches a maximum values (Jsc = 13.9 mA/cm2 , Voc = 0.757 V, FF = 65.6%, ɳ = 6.9%) for an optimal value of CBO = -0.2 eV and Zn proportion of the buffer x = 0.4 (Cd0.6Zn0.4S). The CZTS solar cells parameters are affected by the thickness and the concentration of acceptor carriers. The best performances are obtained for CZTS absorber layer, thichness (d = 2.5 µm) and (ND = 1016 cm-3 ). The obtained results of optimizing the electron work function of the back metal contact exhibited an optimum value at 5.7 eV with power conversion efficiency of 13.1%, Voc of 0.961 mV, FF of 67.3% and Jsc of 20.2 mA/cm2 .