Catégorie A SET

Choug, N. 2020. “Hybrid Fuzzy Reference Signal Tracking Control of a Doubly Fed Induction Generator”. International Journal of Engineering (IJE) 33 (4) : 567-574. Publisher's Version Abstract

This paper presents a hybrid scheme for the control of active and reactive powers using the direct vector control with stator flux orientation (SFO) of the DFIG. The hybrid scheme consists of Fuzzy logic, Reference Signal Tracking (F-RST) controllers. The proposed (F-RST) controller is compared with the classical Proportional-Integral (PI) and the Polynomial (RST) based on the pole placement theory. The various strategies are analyzed and compared in terms of tracking, robustness, and sensitivity to the speed variation. Simulations are done using MATLAB software. The simulation results prove that the proposed approach leads to good performances such as the tracking test, the rejection of disturbances and the robustness concerning the parameter variations. The hybrid controller is much more efficient compared to those of PI and RST controller, it also improves the performance of the powers and ensures some important strength despite the parameter variation of the DFIG.

Choug, N., Said Benaggoune, and Sebti Belkacem. 2020. “Hybrid Fuzzy Reference Signal Tracking Control of a Doubly Fed Induction Generator”. International Journal of Engineering (IJE) 33 (4) : 567-574. Publisher's Version Abstract

This paper presents a hybrid scheme for the control of active and reactive powers using the direct vector control with stator flux orientation (SFO) of the DFIG. The hybrid scheme consists of Fuzzy logic, Reference Signal Tracking (F-RST) controllers. The proposed (F-RST) controller is compared with the classical Proportional-Integral (PI) and the Polynomial (RST) based on the pole placement theory. The various strategies are analyzed and compared in terms of tracking, robustness, and sensitivity to the speed variation. Simulations are done using MATLAB software. The simulation results prove that the proposed approach leads to good performances such as the tracking test, the rejection of disturbances and the robustness concerning the parameter variations. The hybrid controller is much more efficient compared to those of PI and RST controller, it also improves the performance of the powers and ensures some important strength despite the parameter variation of the DFIG.

SAIDI, Abderazak, et al. 2020. “Two Types of Fuzzy Logic Controllers for the Speed Control of the Doubly-Fed Induction Machine”. Advances in Electrical and Computer Engineering 20 (3). Publisher's Version Abstract

The paper presents two fuzzy logic control algorithms: type-1 and type-2. These two nonlinear techniques are used for adjust the speed control with a direct stator flux orientation control of a doubly fed induction motor. The effectiveness of the proposed control strategy is evaluated under different operating conditions such as of reference speed and for load torque step changes at nominal parameters and in the presence of parameter variation (stator resistance, rotor resistance and moment of inertia). The results of the simulation of the doubly fed induction motor velocity control have shown that fuzzy type-2 ensures better dynamic performances with respect to fuzzy type-1 control, even by parametric variations and external disturbances.

This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
Lemya, Medjbeur, et al. 2018. “An Adaptive Fuzzy H Synergetic Approach to Robust Control, ISSN / e-ISSN 0022-0434 / 1528-9028 ”. Journal of Dynamic Systems, Measurement, and Control volume 140 (Issue 1) : pp. 011008. Publisher's Version Abstract
Robust control often requires some adaptive approach in evaluating systems dynamics to handle parameters variations and external disturbances. Therefore, an error due to dynamics approximation is inevitably added to uncertainties already present in the model. This issue is addressed in this paper, through the combination of two robust techniques, Hinf and synergetic control. These latter are used to ensure reducing tracking error in the overall closed-loop system while guaranteeing stability via Lyapunov synthesis. With the aim of handling parameters variations, an indirect adaptive fuzzy scheme is used to elaborate system model. Simulation studies are conducted to assess the proposed approach on two practical systems, and the results are compared to a sliding mode proportional integral (PI)-based technique. It is to be noted that a large class of systems depicted as control affine systems will be considered in this paper. An induction motor and an inverted pendulum representing, respectively, a linear and a nonlinear system are utilized in this study showing improvement due to the suggested approach, in overall performance over its sliding mode control counterpart.
Nadjat, Zerroug, et al. 2018. “DSP-based implementation of fast terminal synergic control for a DC-DC Buck converter, ISSN / e-ISSN 0016-0032 / 1879-2693”. Journal of the Franklin Institute volume 355 (Issue 5) : pp. 2329-2343. Publisher's Version Abstract
Finite time convergence based on robust synergetic control (SC) theory and terminal attractor techniques is investigated. To this end a fast terminal synergetic control law (FTSC) is applied to drive a DC–DC Buck converter via simulation and through a dSpace based experimental setup to validate the approach. As robust as sliding mode control, the synergetic approach used is chattering free and provides rapid convergence. Efficacy of the proposed fast terminal synergetic controller is tested for step load change and output voltage variation and results compared to classical synergetic and PI control. Experimental validation using dSpace DS1104 confirms the results obtained in simulation showing the soundness of this approach compared to synergetic and PI controllers.
  •  
  • 1 of 2
  • »