Publications Internationales 2010 - 2019

F. Mazouz, S. Belkacem, I. Colak, S. Drid, and Y. Harbouche, “Adaptive direct power control for double fed induction generator used in wind turbine,” International Journal of Electrical Power & Energy Systems, vol. 114, 2020.Abstract
This papers deal with a new Adaptive Direct Power Control for Doubly-Fed Induction Generator of 1.5 MW. The main feature of the proposed strategy is based on the replacement of the fixed switching table by an adaptive one. The online update of the adaptive switching table depends on the reactive power variation and past switching sequences. The proposed adaptive direct power control is compared with Vector Control and Classical Direct Power Control. The robustness of the proposed control scheme against parameter, load and wind speed variations have done with success. The main performance of the Adaptive Direct Power Control strategy is the reduction of powers ripples, thus reduce of torque ripple on the shaft of the turbine.
M. Sellali, S. Abdeddaim, A. Betka, A. Djerdir, S. Drid, and M. Tiar, “Fuzzy –Super twisting control implementation of battery/super capacitor for electric vehicles,” ISA transactions, 2019.Abstract
The present paper deals with a real-time implementation of a novel Fuzzy logic energy management strategy (EMS), applied to a battery–super capacitor hybrid energy system and associated with a permanent magnet synchronous motor (PMSM) which emulates the traction part of an electric vehicle (EV). On the sources side, the fuzzy logic supervisor acts in a smart way to permute smoothly between the various operations modes via an efficient power frequency splitting. In addition, it permits a quite regulation of both the DC bus and the super-capacitor (SC) voltages regardless of the speed profile variations to ensure an optimal power flow to the load and to keep the SC operation in a safe voltage range while providing or absorbing power in transients. On the traction side, a second order sliding mode control called ‘super-twisting’ (ST), associated with a space vector modulation (SVM) strategy is applied to ensure …
M. Sellali., A. Betka, S. Drid, A. Djerdir, L. Allaoui, and M. Tiar, “Novel control implementation for electric vehicles based on fuzzy-back stepping approach,” Energy, vol. 178, pp. 644-655, 2019.Abstract
The present paper deals with a real-time assessment of a fuzzy –backstepping based control applied to a battery-supercapacitor (SC) hybrid energy storage system (HESS). To properly emulate the behavior of an electric vehicle, the proposed topology is extended to a PMSM drive, that represents the traction part. The proposed control scheme is divided into two parts: The first part plans a fuzzy logic power management approach, to operate the system in a smart way: First, It ensures an optimal load power-sharing, focusing the operation of the involved sources in a safe mode. Second, a quite regulation of both the dc bus and the SC voltage without additional controllers. The second part proposes a back-stepping direct torque control (BS-DTC), associated to a space vector modulation (SVM) strategy, to ensure decoupled torque and flux control of the PMSM machine. The experimental results, conducted on a small …
R. Cheikh, A. Menacer, L. C. Alaoui, and S. Drid, “Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator- based wind energy conversion system,” Frontiers in Energy, 2018.Abstract
In this paper, the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system (WECS) is proposed in order to obtain robustness against disturbances and harvest a maximum power from a typical stochastic wind environment. The technique overcomes both the problem of nonlinearity and the uncertainty of the parameter compared to such classical control designs based on traditional control techniques. The method is based on the differential geometric feedback linearization technique (DGT) and the Lyapunov theory. The results obtained show the effectiveness and performance of the proposed approach.
  •  
  • 1 of 5
  • »