Publications by Year: 2022

2022
Salah I, Adjroud O, Elwej A. Protective Effects of Selenium and Zinc Against Nickel Chloride-Induced Hormonal Changes and Oxidative Damage in Thyroid of Pregnant Rats. Biological Trace Element Research [Internet]. 2022;200 (5) :2183-2194. Publisher's VersionAbstract

Nickel chloride (NiCl2) is a heavy metal that may affect the function of the thyroid. Selenium (Se) and zinc (Zn) are essential trace elements involved in thyroid hormone metabolism. However, little is reported about thyrotoxicity during gestation. The current study aimed to investigate the protective effects of selenium and zinc against NiCl2-induced thyrotoxicity in pregnant Wistar rats. Female rats were treated subcutaneously (s.c.) on the 3rd day of pregnancy, with NaCl 0.9% and served as control, NiCl2 (100 mg/kg body weight (BW)) alone, or in association with Se (0.3 mg/kg, s.c.), ZnCl2 (20 mg/kg, s.c.), or both of them simultaneously. Oxidative stress parameters, thyroid biomarkers, and histopathological examination were evaluated. Results showed that NiCl2 exposure caused a significant decrease in maternal body weight and an increase in absolute and relative thyroid weight compared to the controls. NiCl2 administration also led to decreased plasma triiodothyronine (T3) and thyroxine (T4) with a concomitant significant increase in thyroid-stimulating hormone (TSH) levels when compared to that of control. In addition, an overall pro-oxidant effect was associated with a decrease in the reduced glutathione (GSH) and nonprotein thiol (NPSH) contents and the enzymatic activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), and an increase in malondialdehyde (MDA). These biochemical disturbances were confirmed by histological changes. However, the co-treatment of Se and/or ZnCl2 attenuates NiCl2-induced changes. Our findings suggested that Se and ZnCl2 ameliorated NiCl2-induced thyrotoxicity in pregnant Wistar rats by exhibiting antioxidant effects.

Fedala A, Adjroud O, Bennoune O, Abid-Essefi S, Foughalia A, Timoumi R. Nephroprotective Efficacy of Selenium and Zinc Against Potassium Dichromate-Induced Renal Toxicity in Pregnant Wistar Albino Rats. Biological Trace Element Research [Internet]. 2022;200 (11) :4782-4794. Publisher's VersionAbstract

Hexavalent chromium (CrVI) compounds are potent toxicants commonly used in numerous industries. Thus, potential toxic effects and health hazards are of high relevance. Selenium (Se) and zinc (Zn) are known for their antioxidant and chemoprotective properties. However, little is known about their protective effects against CrVI-induced renal damage during pregnancy. In this context, the present study aimed to investigate the protective efficacy of these two essential elements against potassium dichromate-induced nephrotoxicity in pregnant Wistar Albino rats. Female rats were divided into control and four treated groups of six each receiving subcutaneously on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c. single dose) alone, or in association with Se (0.3 mg/kg, s.c. single dose), ZnCl2 (20 mg/kg, s.c. single dose) or both of them simultaneously. The nephrotoxic effects were monitored by the evaluation of plasma renal parameters, oxidative stress biomarkers, DNA damage, and renal Cr content. The obtained results showed that K2Cr2O7 disturbed renal biochemical markers, induced oxidative stress and DNA fragmentation in kidney tissues, and altered renal histoarchitecture. The co-administration of Se and/or ZnCl2 has exhibited pronounced chelative, antioxidant, and genoprotective effects against K2Cr2O7-induced renal damage and attenuated partially the histopathological alterations. These results suggest that Se and Zn can be used as efficient nephroprotective agents against K2Cr2O7-induced toxicity in pregnant Wistar Albino rats.