Considering three sites under different climate conditions (arid, semi-arid, and subhumid), this study aims to use the vadose-zone water stable isotope profiles to estimate the groundwater recharge rate. High-resolution vertical subsurface soil sampling along the vadose zone of the investigated sites was conducted. The collected samples were analysed to determine their stable isotope ratios (δ2H and δ18O) that were used along with the piston displacement method to estimate recharge. Annual recharge rates of 0.2% (± 0.1%), 2.5%, and 18% of the total annual precipitation were obtained for the arid, semi-arid, and subhumid sites, respectively. Recharge rates at the semi-arid and subhumid sites are comparable to those previously estimated using water balance-based methods. The recharge rate at the arid site is lower than that previously estimated for that site using the water budget-based method, revealing difficulties in applying the piston displacement method under an arid regime.
Stratigraphic, sedimentological and magnetic study was performed on alluvial terraces, rich in archaeological tools, the region of OUM ALI, in north-eastern Algeria. The sedimentological points of view, the sediments are dominated by the sand fraction followed by the silt fraction; moderate concentrations of CaCO3 are the result of the dissolution of the surrounding limestone reliefs (Maastrichtian limestone). The morphoscopic observation of quartz grains with a dissecting microscope allows us to offer more or less significant changes, since they are often dull or sub-blunted. The results of the magnetic survey are consistent with those of the sedimentological study. The values of magnetic susceptibility are strong in the middle part of the stratigraphic section (just above the archaeological level) and decrease slightly at the top. Lower values are stored in the lower part. The dependence of frequency values of magnetic susceptibility (fd) are strong throughout the stratigraphic section and show the presence of a mixture of single-domain grain size (R), pseudo-single domain (PMD) and superparamagnetic (SP) (with a predominance of SP grains). The high concentration of SP grain size reveals the presence of significant soil formation during the implementation of the sediment
On the southwestern Tethyan Margin of Tunisia, the well-known anoxic black shale facies of the Cenomanian-Turonian transition contrasts with oxic fossiliferous carbonates, first characterized here as lateral equivalents. In terms of sequence stratigraphy, the analysis of four wisely sampled sections in Central and Southern Tunisia led to interpret these deposits as a transgressive interval (TST). This interval spans the Whiteinella archaeocretacea Zone of foraminifera and is capped with a glauconite-rich highly bioturbated maximum flooding surface (MFS). In the reference section of Oued Bahloul and the Kalaat Senan area of North-Central Tunisia, these deposits overlay a Shelf Margin Wedge made of conglomeratic and bioclastic limestones. In South-Central and Southern Tunisia, the TST is characterized by the onset of oxic facies relaying laminated carbonates with local emergence surfaces. The analysis of both oxic and anoxic facies from the Cenomanian-Turonian transition allows identifying five successive bioevent markers, known elsewhere within the Tethyan domain: the extinction of the foraminifera genus Rotalipora (or Thomasinella), the Heterohelix shift, the Whiteinella proliferation, the filament event, and the appearance of Helvetotruncana helvetica. Among these bioevents, the Heterohelix shift coincides with the transgressive surface, while the filament event announces the maximal flooding surface. These Cenomanian-Turonian transition bioevents are of a particular relevance for regional and long-distance high-resolution correlations.
The authorities of Constantine city have been working on the redevelopment and calibration of the Rhumel and Boumerzoug wadis since 2015. The latter calebrage works caused great damage to the banks, thus affecting the Quaternary geological formations in place (alluvial terraces, flood plains). A multidisciplinary research project based on a geomorphological and sedimentological approach was quickly set up to create a scientific data base before their total destruction and loss of physical traces all along the wadis. The present study focuses on the sedimentological and geochemical analysis of the alluvial deposits of Boumerzoug wadi in order to describe the sediments, to reconstitute their nature, and to interpret both the climatic evolution and the paleo-environments of the region. Sedimentological and geochemical results confirm the succession of deposition cycles linked to progressive climate change.
The Bouteldja coastal aquifer is one of the most important groundwater resources in North eastern of Algeria. The region is under a sub-humid climate with an average rainfall of 600-880 mm/y. The unconfined aquifer is constituted of Quaternary sands formations. The hydrogeological characteristics were determined based on previous reports. A very important inflow recharges the sandy aquifer in the Southeastern boundary, in relation to a fault network system linking the aquifer and the Obeira Lake area. Another inflow is observed at the Southern boundary in relation to the exchanges with the alluvial aquifer of Bouteldja. The purpose of the present study is to provide an initial assessment of the groundwater flow and water budget of this aquifer. To achieve this goal, a one-layer groundwater flow numerical model was developed using the MODFLOW-2005 code and the FREEWAT software, using the available data. The model was run in steady state conditions. Calibration was achieved using the piezometric measurements of May 2018 as calibration target. After several trials of manual calibrations, the model successfully simulated the groundwater flows directions and heads. Calibration efforts lead to an acceptable concordance (for the purpose of this study) between the estimated and calculated hydraulic conductivity and piezometric heads, except at the Eastern border. The analyses of the simulated inflow budget shows that aside the rainfall infiltration, exchanges with surface water bodies, the adjoining alluvial aquifer and the fault system provide a relevant amount of water. This significant recharge needs additional investigations. This numerical modeling exercise using MODFLOW, the FREEWAT software and GIS reached the objective of a preliminary description of the groundwater flow and it represents an acceptable starting point for more thorough hydrodynamic characterization of the Bouteldja coastal aquifer.