Publications

Hammadi, A., Nafaa Brinis, and M Djidel. In Press. “Hydrodynamic Characteristics of the “Complex Terminal” aquifer in the Region of Oued Righ North (Algerian Sahara)”. Algerian Journal of Environmental Science and Technology. Publisher's Version Abstract

Accessibility of fresh water, the nature's gift wheels the foremost part of the world economy. The sufficient supplies of water are essential for agriculture, human intake, industry as well as regeneration. The Oued Righ region is located in Algeria's South-East, specifically in the NorthEast of the Sahara, on the Northern edge of the Grand Erg Oriental and the Southern border of the Aures massif. This area appears as a lower Sahara synclinal basin and is part of a broad North-South trending ditch. It is famous for its date palms, the development of the date culture in this region is attributed not only to the population’s efforts, but above all to the particular climatic conditions, the favorable soil characteristics and the existence of significant groundwater. The aim of this study is to understand the results obtained from using different approaches of water hydrodynamics in the Complex Terminal aquifer. The aquifer’s hydrodynamic characterization was carried out using hydrodynamic parameters and piezometry. As a result, the transmissivity and permeability obtained data using traditional Cooper-Jacob method showed that the flow capacities of the aquifer environment and the productivities of the structures are important in the studied zone where, the highest value of transmissivity equal 2.36× 102-m 2 /sis found in the central part of the study area in El-Meghair. The establishment of piezometric maps reveals a flow direction oriented toward the chott.

H. Belalite,, M.R. Menani, and A. Athamena. 2022. “Calculation of water needs of the main crops and water resources available in a semi-arid climate, case of Zana-Gadaïne plain, Northeastern Algeria”. Algerian Journal of Environmental Science and Technology ALJEST 8 (2). Publisher's Version Abstract

The relative scarcity of water resources in Algeria and their unequal distribution induce a rational use of available resources. The Zana-Gadaïne plain appears as an exemplary case study, where the difficulties posed by the problem of crop water needs versus the availability of water resources appear. This article, based on field surveys and in-situ measurements, aims to identify the pressure of irrigation on water resources and the optimization of their use in an agricultural area, where irrigated agriculture represents 85% of the water consumption of the Zana-Gadaïne plain. The piezometric study in correlation with hydrogeological data reveals that groundwater resources are limited, aggravated by wastage resulting in a consequent drawdown of 24 meters over 11 years. The analysis of interannual climate variability has enabled us to draw rainfall maps characteristic of the evolution of rainfall over the past decades where we observe a net deficit in precipitation. We calculated the evapotranspiration and the requirements in irrigation water for each crop in order to compare them with the available hydric resources and the establishment of irrigation schedules for the principal irrigated crops. The analysis of interannual climate variability has enabled us to draw rainfall maps characteristic of the evolution of rainfall over the past decades where we observe a net deficit in precipitation. We calculated the evapotranspiration and the requirements in irrigation water for each crop in order to compare them with the available hydric resources and the establishment of irrigation schedules for the principal irrigated crops.

Considering three sites under different climate conditions (arid, semi-arid, and subhumid), this study aims to use the vadose-zone water stable isotope profiles to estimate the groundwater recharge rate. High-resolution vertical subsurface soil sampling along the vadose zone of the investigated sites was conducted. The collected samples were analysed to determine their stable isotope ratios (δ2H and δ18O) that were used along with the piston displacement method to estimate recharge. Annual recharge rates of 0.2% (± 0.1%), 2.5%, and 18% of the total annual precipitation were obtained for the arid, semi-arid, and subhumid sites, respectively. Recharge rates at the semi-arid and subhumid sites are comparable to those previously estimated using water balance-based methods. The recharge rate at the arid site is lower than that previously estimated for that site using the water budget-based method, revealing difficulties in applying the piston displacement method under an arid regime.

Stratigraphic, sedimentological and magnetic study was performed on alluvial terraces, rich in archaeological tools, the region of OUM ALI, in north-eastern Algeria. The sedimentological points of view, the sediments are dominated by the sand fraction followed by the silt fraction; moderate concentrations of CaCO3 are the result of the dissolution of the surrounding limestone reliefs (Maastrichtian limestone). The morphoscopic observation of quartz grains with a dissecting microscope allows us to offer more or less significant changes, since they are often dull or sub-blunted. The results of the magnetic survey are consistent with those of the sedimentological study. The values of magnetic susceptibility are strong in the middle part of the stratigraphic section (just above the archaeological level) and decrease slightly at the top. Lower values are stored in the lower part. The dependence of frequency values of magnetic susceptibility (fd) are strong throughout the stratigraphic section and show the presence of a mixture of single-domain grain size (R), pseudo-single domain (PMD) and superparamagnetic (SP) (with a predominance of SP grains). The high concentration of SP grain size reveals the presence of significant soil formation during the implementation of the sediment

On the southwestern Tethyan Margin of Tunisia, the well-known anoxic black shale facies of the Cenomanian-Turonian transition contrasts with oxic fossiliferous carbonates, first characterized here as lateral equivalents. In terms of sequence stratigraphy, the analysis of four wisely sampled sections in Central and Southern Tunisia led to interpret these deposits as a transgressive interval (TST). This interval spans the Whiteinella archaeocretacea Zone of foraminifera and is capped with a glauconite-rich highly bioturbated maximum flooding surface (MFS). In the reference section of Oued Bahloul and the Kalaat Senan area of North-Central Tunisia, these deposits overlay a Shelf Margin Wedge made of conglomeratic and bioclastic limestones. In South-Central and Southern Tunisia, the TST is characterized by the onset of oxic facies relaying laminated carbonates with local emergence surfaces. The analysis of both oxic and anoxic facies from the Cenomanian-Turonian transition allows identifying five successive bioevent markers, known elsewhere within the Tethyan domain: the extinction of the foraminifera genus Rotalipora (or Thomasinella), the Heterohelix shift, the Whiteinella proliferation, the filament event, and the appearance of Helvetotruncana helvetica. Among these bioevents, the Heterohelix shift coincides with the transgressive surface, while the filament event announces the maximal flooding surface. These Cenomanian-Turonian transition bioevents are of a particular relevance for regional and long-distance high-resolution correlations.

  •  
  • 1 of 13
  • »