Bouglada M-salah, abdelghani Naceri, Behhedi M, Pereira-de-Oliveira L.
Characterization and modelling of the rheological behaviour of blended cements based on mineral additions. European Journal of Environmental and Civil Engineering [Internet]. 2019;25 (4) :655-672 .
Publisher's VersionAbstract
This paper presents an experimental study to evaluate the effect of local mineral additions (pozzolan, slag and limestone) on the rheological behaviour of based cement binder’s pastes. The binary, ternary and quaternary binder pastes were prepared with the partial clinker cement replacement limited up to 20%, according with type CEM II specifications. The cements were characterized by their geometric shapes, the reactivity and the chemical composition. An experimental design plan was used to modelling the rheological behaviour of pastes. The relatives yield stress and plastic viscosity of binder’s pastes, with normal consistency, were determined. The results showed that all the tested compositions with additions follow the same rheological behaviour law according to the Bingham model. The binder pastes rheological parameters (yield stress and viscosity) are affected by mineral additions. The highest values of the rheological parameters were measured in binary and ternary cements with limestone and pozzolan. On the other hand, the lower viscosity among the tested pastes was obtained with slag addition. The statistical approach allowed us to obtain a satisfactory modelling of viscosity and yield stress with a coefficient of determination R2 = 0.91 and 0.92, respectively and a satisfactory correlation between the viscosity and the water/binder ratio (W/B) for a normal consistency with a coefficient of determination R2 = 0.91.
Noui A, Bouglada M_S, Belagraa L, Achour Y, Abderazak B.
STUDY OF THE MECHANICAL BEHAVIOR AND DURABILITY OF MORTARS BASED ON PREPARED SAND. Mining science. 2019;27 :47–59.
Abstract
Sand occupies a great proportion of the cementitious matrix product and in particular mortars. Hence, the study of fine aggregates used for concrete and mortar in general, deserves to be objects of research including sand which has always been considered as inert material, whose role is exclusively physical. The study of mortars performances based on prepared sand to assess the effect of the type and rate of substitution of mineral additions pozzolana and blast furnace slag of a natural sand fine fraction (sieve diameter less than 0.16 mm) is seen as the main objective of the present experimental research work. The natural sand replaced size is less than 160 µm and for rheological reasons the maximum replacement rate of natural sand is limited to 10%. The results obtained show a significant improvement of the mechanical properties for the mortars based on the new activated sand. With regard to durability tests of HCl and H2SO4 acids chemical attacks, the substitution of the quartz by active mineral additions in the sand-size skeleton allows an advantageous reduction in loss of resistance up to 50% and a mass gain around 75%.
Mebarki M, Kareche T, Derfouf F-EM, Taibi S, Abou-Bekr N.
Hydromechanical behavior of a natural swelling soil of Boumagueur region (east of Algeria). Geomechanics and Engineering [Internet]. 2019;17 (1) :69-79.
Publisher's VersionAbstract
This work presents an experimental study of the hydromechanical behavior of a natural swelling soil taken from Boumagueur region east of Algeria. Several pathological cases due to the soil shrinkage / swelling phenomenon were detected in this area. In a first part, the hydric behavior on drying-wetting paths was made, using the osmotic technics and saturated salts solutions to control suction. In The second part, using a new osmotic oedometer, the coupled behavior as a function of applied stresses and suction was investigated. It was shown that soil compressibility parameters was influenced by suction variations that an increase in suction is followed by a decrease in the virgin compression slope. On the other hand, the unloading slope of the oedometric curves was not obviously affected by the imposed suction. The decrease in suction strongly influences the apparent preconsolidation pressure, ie during swelling of the samples after wetting.
Beghoul M, Demagh R.
Slurry Shield Tunneling in Soft Ground-Comparison between Field Data and 3D Numerical Simulation. Studia Geotechnica et Mechanica [Internet]. 2019;41 (3) :115 - 128.
Publisher's VersionAbstract
In urban areas, the control of ground surface settlement is an important issue during shield tunnel-boring machine (TBM) tunneling. These ground movements are affected by many machine control parameters. In this article, a finite difference (FD) model is developed using Itasca FLAC-3D to numerically simulate the whole process of shield TBM tunneling. The model simulates important components of the mechanized excavation process including slurry pressure on the excavation face, shield conicity, installation of segmental lining, grout injection in the annular void, and grout consolidation. The analysis results from the proposed method are compared and discussed in terms of ground movements (both vertical and horizontal) with field measurements data. The results reveal that the proposed 3D simulation is sufficient and can reasonably reproduce all the operations achieved by the TBM. In fact, the results show that the TBM parameters can be controlled to have acceptable levels of surface settlement. In particular, it seems that moderate face pressure can reduce ground movement significantly and, most importantly, can prevent the occurrence of face-expected instability when the shield crosses very weak soil layers. The shield conicity has also an important effect on ground surface settlement, which can be partly compensated by the grout pressure during tail grouting. Finally, the injection pressure at the rear of the shield significantly reduces the vertical displacements at the crown of the tunnel and, therefore, reduces the settlement at the ground surface.