Publications

2023
Bouatia M, Demagh R, Derriche Z. numerical investigation of buried pipelines subjected to permanent ground deformation due to shallow slope failure (part i: transverse behaviour). Jordan Journal of Civil Engineering, JJCE [Internet]. 2023;17 (1). Publisher's VersionAbstract

Permanent Ground Deformations (PGD) that follow slope failures caused catastrophic damages on buried pipelines. This paper presents a two-dimensional numerical analysis of the behavior of an 800mm water transport pipeline buried in the Aine-Tine slope (Mila, Algeria) subjected to shallow PGD triggered by the recent earthquake of August 07th, 2020 (M= 4.9). The soil-pipeline interaction was simulated focusing on the effect of (1) the magnitudes of the PGD and (2) the rigidity of the pipeline on the structural response of the pipeline. The pipeline deformations (i.e., translation and ovalization) and radial internal efforts (i.e., axial forces F_A, shear forces F_S, and bending moments M_B) result highlighted that shallow PGD can cause additional loads on pipelines that are proportional to the magnitude of PGD. Moreover, it was found that rigid pipelines are more performant than flexible pipelines. Through a simplified numerical simulation, the study helps engineers and planners to predict the actual causes of pipeline leaks and ruptures leading to severe disruption of their normal operations.

2022
Baghdadi M, Dimia MS, Baghdadi D. A Parametric Study of Fire-Damaged Reinforced Concrete Columns under Lateral Loads. Engineering, Technology & Applied Science Research [Internet]. 2022;12 (5) :9113-9119. Publisher's VersionAbstract

Columns are the structural members of buildings that ensure structural stability. A fire can severely affect the columns' structural performance by degrading the properties of their constituent materials, thereby reducing the strength capacity, stiffness, and stability. In seismic zones, the knowledge of the post-fire behavior of these elements is a fundamental requirement for a realistic seismic performance assessment. This study utilized numerical analysis using the parametric fire model of Eurocode-1 to estimate the post-fire axial and lateral performance of reinforced concrete columns. In the first step, the axial load-bearing capacity was evaluated from a parametric study for cantilever columns. In the second step, the lateral load capacity, force-displacement behavior, stiffness, ductility, energy dissipation capacity, and residual displacements were estimated to determine the impact of fire damage on the behavior of columns under lateral loads. The results showed that both the lateral load capacity and the ductility of the reinforced concrete columns decreased significantly due to fire exposure. This also indicated that fire damage decreases the vertical load-bearing capacity, and the reduction in lateral capacity was attributed to the loss of concrete's compressive strength. The column characteristics that significantly influence the residual response behavior were identified as section size, column height, axial load ratio, and concrete's compressive strength.

Djenane M, Demagh R, Hammoud F. Rotation of Stresses in French Wheel Tracking Test. Civil Engineering Journal [Internet]. 2022;8 (3). Publisher's VersionAbstract

The main function of a pavement is to distribute the traffic-induced load over its different layers. While the flexible pavement design methods are based on a linear elastic calculation, the real behavior of the different layers is highly nonlinear and elastic. They can also, in some cases, be plastic and viscous. This research aims to develop a three-dimensional numerical model that is closely similar to the test FWTT conditions. The model will have a real geometry wheel footprint (rather than a rectangular shape). As a substitute for incremental loading, the wheel movement during its passage over the specimen will be simulated by a horizontal displacement. These important characteristics of the model represent the novelty and the major difference between the current research and previous studies. The current model, which is based on the finite elements method, uses Abaqus software and a viscoelastic constitutive model. The materials' viscoelastic properties have been described by the Prony series, also called the relaxation modulus, which is a function of time. This parameter can be defined in most computer-aided engineering (CAE) software. The procedure for calculating the Prony series from experimental data is explained. The results obtained agree with the stress signal amplitude, the stress rotation principal, and the total displacement rotation when the load approaches the node considered and located in the middle of the specimen.

Abdelhamid F, Yahiaoui D, Saadi M, Lahbari N. Lateral Reliability Assessment of Eccentrically Braced Frames Including Horizontal and Vertical Links Under Seismic Loading. Engineering, Technology & Applied Science Research [Internet]. 2022;12 (2) :8278-8283. Publisher's VersionAbstract

Eccentrically Braced Frames (EBFs) have been widely used in the last decades and proved their efficiency to resist strong earthquake intensities by providing suitable ductility and lateral stiffness. Using the PBPD method for the design, EBFs can fulfill the target performance objectives under major earthquakes. The most commonly used configurations are the K-shaped and the recent Y-shaped EBFs, which have the advantage that the links are independent of the beam and can be easily replaced after an earthquake without serious damage to the beam and slab. This study focused on the lateral reliability of both systems under seismic loading. Nonlinear static pushover and Incremental Dynamic Analysis (IDA) were performed on 5-story and 10-story K- and Y-shaped EBFs. A series of 14 near- and 7 far-field seismic records were considered to analyze and compare the inter-story drifts of both systems using the Seismostruct software. Moreover, Peak Ground Accelerations (PGA) and the different performance levels were also examined.

Benaicha AC, Fourar A, Mansouri T, Fawaz M. Valorization of sediment extracted from the dam in construction works. Modeling Earth Systems and Environment [Internet]. 2022;8 :4093–4102. Publisher's VersionAbstract

Sedimentation of dam reservoirs is a complex problem with several dimensions, including filling rates and characteristics of accumulated sediments. Sediment supply from river basins is particularly high in this region because of its semi-arid climate and especially because of poor vegetation protection. The amount of silt accumulated annually since the construction of this dam is estimated at 330000 m3. This silt accumulation strongly limits its storage capacity and consequently its operating duration. The consequences of this serious problem have been catastrophic, including a considerable reduction of 43–84% of the storage capacity of the dams and a clear degradation of water quality that can cause the degradation of the ecosystem functioning and can lead to irreversible changes. The silt present in abundance in the Algerian dams can, thus, constitute a potential resource to be judiciously exploited towards the increase of the performances of the construction materials. The extraction of sediments accumulated in the dam reservoir is, therefore, imperative. These sediments have a great geotechnical value. The objective of this study is to assess the feasibility of the recovery of mud by studying the knowledge of the sediments of the dam of Koudiat Medouar. The results of the tests carried out in laboratory allowed us to identify the various sediments from a physical and geotechnical point of view. These materials must of course meet certain rigorous criteria in terms of mechanical strength and durability and environmental impact. The experimental approach that we adopted allowed us to determine the characteristics of the materials necessary for the realization of compressed earth bricks (BTC) in conformity with the recommendations of the technical guides of construction.

Bahloul O, Ziani H, Benmoussa S. Impact of Calcium Chloride on the Microstructure of a Collapsible Soil. Annales de Chimie - Science des Matériaux [Internet]. 2022;46 (4) :201-206. Publisher's VersionAbstract

The study of the collapse of soils under the effect of flooding is a major problem in soil mechanics. Most of the work done on the treatment of these soils has been devoted to the use of binders of hydraulic or organic types. However, little work has been devoted to the use of salt calcium chloride in collapsible soil treatments. The purpose of this study is to evaluate the effect salt calcium chloride on a reconstituted collapsible soil in the laboratory, at different levels of water content, compaction energy and concentration of the saline solution. The results obtained showed a significant reduction in the potential for soil deformation and an illustration and a noticeable interaction between the soil particles and the saline solution resulting in a denser material.

Hafhouf I, Bahloul O, Abbeche K. Effects of drying-wetting cycles on the salinity and the mechanical behavior of sebkha soils. A case study from Ain M'Lila, Algeria. CATENA [Internet]. 2022;2012. Publisher's VersionAbstract

Sebkha soils are defined as problem soils located in arid, semi-arid, and coastal areas. Generally, they are fine soil, composed of silt, sand, and clay, which are cemented by different salts (e.g., halite, gypsum, and calcite). In nature, sebkha saline soils are exposed to different drying and wetting (D-W) cycles. However, these cycles have a significant effect on the mechanical behavior of these soils. This study aims to characterize the chemical, mineralogical, and geotechnical properties of sebkha soil using an experimental approach. We focus on the effects of D-W cycles on the unconfined compressive strength (UCS) and salinity of sebkha soils from Ain M'Lila, Algeria. In addition, these D-W cycles were applied to the samples dried in the open air to achieve the targeted water content (water content values of 7%, 11.4%, and 13%). The results obtained show that the UCS increases with decrease in water content and decreases with an increase in the number of D-W cycles. In addition, these cycles affect the salinity of the sebkha soil. Indeed, a significant decrease in soil salinity was recorded with an increase in the number of D-W cycles. Finally, a relationship was found between the salinity of the soil and UCS. The latter decreases with a decrease in soil salinity; this relationship becomes very significant for low water content values of 7% or less.

Guettafi N, Yahiaoui D, Abbeche K, Bouzid T. Numerical Evaluation of Soil-Pile-Structure Interaction Effects in Nonlinear Analysis of Seismic Fragility Curves. Transportation Infrastructure Geotechnology [Internet]. 2022;9 :155–172. Publisher's VersionAbstract

Seismic fragility curves are considered an effective tool for the evaluation of the behavior of interaction of the soil-pile-structure (ISPS) subjected to earthquake loading. In this research, in order to better understand the ISPS effect, a nonlinear static analysis is applied with a variation of the vertical load, the diameter of pile, and finally the longitudinal steel ratio of the pile in different types of sand (loose, medium, dense) to obtain the capacity curves of each parameter for elaborating the curves of fragility. After a comparison of fragility curves of these parameters, it appears that the effect of the ISPS system is advantageous with respect to the vertical axial load and the diameter of pile, while the longitudinal ratio of the pile depending on the ductility and the lateral resistance of the ISPS system. The proposed equation is intended to help engineers in the design and performance of the soil-pile-structure interaction. The results of this equation provided a convergence with the results of the fragility curves.

Saadi M, Yahiaoui D. The Effectiveness of Retrofitting RC Frames with a Combination of Different Techniques. Engineering, Technology & Applied Science Research [Internet]. 2022;12 (3) :8723-8727. Publisher's VersionAbstract

During the last two decades, the attention of researchers has been focused on repairing and retrofitting concrete frames to make them more earthquake-resistant. Two methods have been developed to increase the seismic resistance of previously undamaged structures before they are subjected to an earthquake. The first is through the addition of new structural members, such as steel braces and the second is by selectively strengthening structural elements, for instance through steel caging. Seismic response analysis results have been utilized in multi-story RC frames that were designed without seismic design criteria. This study aims to determine whether the retrofitting technique is effective based on comparisons between steel braces, steel cages, and their combinations. The seismic performance is defined by the seismic code for Algeria RPA 2003 according to the latest recommendations. Static nonlinear analysis was used to compare seismic responses of existing non-ductile reinforced concrete RC frames under a variety of retrofit schemes. The results show that retrofitting with steel caging gives excellent performance in terms of ductility and low shear capacity. The retrofitting with steel bracing increased the shear capacity but led to a severe ductility deficiency. The retrofitting structure combined with steel bracing and steel caging shows good performance in shear capacity and ductility. Using the Zipper system (steel bracing) and V system in combination with steel caging gives similar results to the RPA model.

Yahiaoui D, Mamen B, Saadi M, Bouzid T. EXPERIMENTAL VERIFICATION OF THE NEW MODELS APPLIED TO GLASS FIBRE REINFORCED CONCRETE (GFRC) CONFINED WITH GLASS FIBRE REINFORCED POLYMER (GFRP) COMPOSITES. Ceramics-Silikáty [Internet]. 2022;66 (3) :384-395. Publisher's VersionAbstract

External confinement by the GFRP composites offers an actual process for retrofitting glass fibre reinforced concrete columns (GFRC) subject to static or seismic loads. This paper presents an experimental investigation and analytical modelling of the axial compression of confined circular concrete columns of different strengths (8.5, 16, and 25 MPa). Furthermore, the columns contain different percentages of glass fibres (0.3 to 1.2 %), and their confinement is given by GFRP composites of various thicknesses (0.8 to 2.4 mm). The uniaxial compression test on these specimens reveals that the glass fibre percentage and the thickness of the GFRP play a vital role in improving the load-deformation behaviour and crack propagation. Whatever the concrete strength, the ultimate axial strain and stress predicted using the suggested confinement model almost agrees with the available experimental results.

Yahiaoui D, Saadi M, Bouzid T. Compressive Behavior of Concrete Containing Glass Fibers and Confined with Glass FRP Composites. International Journal of Concrete Structures and Materials [Internet]. 2022. Publisher's VersionAbstract

In this paper, numerous experimental tests were carried out to study the behavior of concrete containing glass fibers and confined with glass fiber-reinforced polymer (GFRP). Concrete specimens containing different fiber percentages ( 0.3 wt.%, 0.6 wt.%, 0.9 wt.% or 1.2 wt.%) and with different strengths of concrete (8.5 MPa, 16 MPa and 25 MPa) and different confinement levels (two, four and six layers of GFRP) were used as research parameters. The samples were tested to failure under pure axial compression. The results imply that the confinement effect with GFRP is relatively higher for concrete samples containing glass fiber (GFCC) with a percentage equal to 0.6 wt.%. The theoretical of stress ratios (fcc/fco) estimated by using existing ultimate strength models are found to be close to the experimental results for high strength of GFCC, but not close to the experimental results for low strength of GFCC.

2021
Bouglada M_S, Noui A, Belagraa L. Optimization of Cellular Concrete Formulation with Aluminum Waste and Mineral Additions. Civil Engineering Journal (C.E.J) [Internet]. 2021;7 (7). Publisher's VersionAbstract

The paper aims to study cellular concrete with a new approach of formulation without an autoclave, with the use of aluminum waste and incorporation of mineral additions into the sand and evaluate its physical and mechanical properties. In this experimental study, two types of cellular concrete are prepared, based on crushed and dune sand with the incorporation of 15% of the slag and 10% of pozzolana, as sand replacement. An experimental program was performed to determine the compressive strength at 28 days, the density and thermal conductivity of the confected cellular concrete. The obtained results showed that concretes prepared with crushed sand developed better mechanical resistance compared to the dune sand. It is also noted that the concretes containing the mineral additions provide a substantial increase in compressive strength in particular slag. Furthermore, cellular concretes with sand dunes offer better thermal conductivity, compared to those with crushed sand. The use of the additions reduces the Water/Binder (W/B) ratio and leads to a lower thermal conductivity regardless of the used sand nature. The outcome of the present study here in could present a modest contribution for the production of cellular concrete with local materials in particular dune sand, active mineral addition and aluminum waste. The physical and mechanical properties obtained from this new composition are estimated acceptable compared to those of the industry-prepared cellular concrete product.

Guergah C, Dimia M-S, Benmarce A. Numerical Modelling of One-Way Reinforced Concrete Slab in FireTaking Into Account of Spalling. Civil Engineering Journal (C.E.J) [Internet]. 2021;7 (3). Publisher's VersionAbstract

This paper presents a study of the behaviour of Reinforced Concrete (RC) slabs subjected to severe hydrocarbon fire exposure. In which the spalling phenomena of concrete is to be considered. The hydrocarbon curve is applicable where small petroleum fires might occur, i.e. car fuel tanks, petrol or oil tankers, certain petro-chemical facilities, tunnels, parking structures, etc. Spalling is included using a simplified approach where elements with temperatures higher than 400 °C are assumed to occur and the corresponding thermo-mechanical response of RC slabs is evaluated. The nonlinear finite element software SAFIR has been used to perform a numerical analysis of the spalling risk, by removing layers of concrete covering when a set of spalling criteria is checked. The numerical results obtained by finite element analysis of the temperature distribution within the slab and mid-span deflection were compared with published experimental data. Predictions from the numerical model show a good agreement with the experimental data throughout the entire fire exposure to the hydrocarbon fire. This shows that this approach (layering procedure) is very useful in predicting the behaviour of concrete spalling cases.

Baghdadi M, Dimia MS, Guenfoud M, Bouchair A. An experimental and numerical analysis of concrete walls exposed to fire. Structural Engineering and Mechanics [Internet]. 2021;77 (6) :819-830. Publisher's VersionAbstract

 To evaluate the performance of concrete load bearing walls in a structure under horizontal loads after being exposed to real fire, two steps were followed. In the first step, an experimental study was performed on the thermo-mechanical properties of concrete after heating to temperatures of 200-1000oC with the purpose of determining the residual mechanical properties after cooling. The temperature was increased in line with natural fire curve in an electric furnace. The peak temperature was maintained for a period of 1.5 hour and then allowed to cool gradually in air at room temperature. All specimens were made from calcareous aggregate to be used for determining the residual properties: compressive strength, static and dynamic elasticity modulus by means of UPV test, including the mass loss. The concrete residual compressive strength and elastic modulus values were compared with those calculated from Eurocode and other analytical models from other studies, and were found to be satisfactory. In the second step, experimental analysis results were then implemented into structural numerical analysis to predict the post-fire load-bearing capacity response of the walls under vertical and horizontal loads. The parameters considered in this analysis were the effective height, the thickness of the wall, various support conditions and the residual strength of concrete. The results indicate that fire damage does not significantly affect the lateral capacity and stiffness of reinforced walls for temperature fires up to 400oC.

Benaicha AC, Fourar A, Mansouri T, Massouh F. Mechanical Behavior of the Extraction Mud Dam for Use in the Manufacture of CEB. Civil Engineering Journal [Internet]. 2021;7 (10). Publisher's VersionAbstract

The aim of this work is to study the mechanical behavior of the sediments extracted from the Koudiet Meddaouar, Timgad dam (Algeria), for a possible valorization in the field for building works in order to minimize this phenomenon which is currently a concern for the operators and the persons in charge of the mobilization of the water resources. This siltation therefore severely limits its storage capacity and consequently it’s operating life. The extraction of the sediments accumulated in the dam's reservoir is therefore imperative, on the pain of seeing it perish in the medium term. These sediments are, however, of great geotechnical and mechanical value. The results of the tests conducted in the laboratory have enabled us to identify the different sediments from a physical and geotechnical point of view In front of the difficulties noted in the control of the silting up of the dams in Algeria, a very important quantity of silt being deposited annually in the dams. In order to achieve our objective, different mixtures of silt with or without lime treatment, cement glass fibers and powdered fibers were studied for the possible manufacture of Compressed Earth Bricks (CEB). The results obtained show that some of the mixtures present very interesting results in the different tests (compression and bending), verifying the conditions of the standards in force and thus allowing their use in the field of the manufacture of building materials.

Mansouri T, Boufarh R, Saadi D. Effects of underground circular void on strip footing laid on the edge of a cohesionless slope under eccentric loads. Soils and Rocks [Internet]. 2021;44 (1). Publisher's VersionAbstract

Owing to the comeback of small-scale models, this paper presents results of an experimental study based on the effect of underground circular voids on strip footing placed on the edge of a cohesionless slope and subjected to eccentric loads. The bearing capacity-settlement relationship of footing on the slope and impact of diverse variables are expressed using dimensionless parameters such as the top vertical distance of the void from the base of footing, horizontal space linking the void-footing centre, and load eccentricity. The results verified that the stability of strip footing is influenced by the underground void, as well as the critical depth between the soil and top layer of the void. The critical horizontal distance between the void and the centre was also affected by the underground void. Furthermore, the results also verified that the influence of the void appeared insignificant when it was positioned at a depth or eccentricity equal to twice the width of footing.

Benali R, Mellas M, Baheddi M, Mansouri T, Boufarh R. Physico-mechanical Behaviors and Durability of Heated Fiber Concrete. Civil Engineering Journal [Internet]. 2021;7 (9). Publisher's VersionAbstract

The objective of the present manuscript is to describe the impact of polypropylene fibers on the behavior of heated concrete subjected to heating and cooling cycles at temperatures of 200, 450 and 600 °C respectively for six hours, through a series of experimental tests on mass loss, water absorption, porosity, compressive and tensile strength. For this purpose, mixes were prepared with a water/cement ratio with the incorporation of polypropylene fibers with a rate varying from 0.5 to 1.5%. These fibers were added in order to improve the thermal stability and to prevent the concrete from splitting. The results show that a considerable loss of strength was noticed for all tested specimens. The relative compressive strengths of the concretes containing polypropylene fibers were higher than those of the concretes without fibers. Also, a greater loss of mass of the polypropylene fibers compared to those without fibers was noticed when increasing the temperature. The flexural tensile strength of the concrete was more sensitive to elevated temperatures than the compressive strength and a rapid increase in porosity was observed for the fiber-reinforced concrete compared to the reference concrete. Furthermore, water absorption by the fibers is proportional to the fiber content of the concrete.

Hamzaoui L, Bouzid T. The Proposition of an EI Equation of Square and L–Shaped Slender Reinforced Concrete Columns under Combined Loading. Engineering, Technology & Applied Science Research [Internet]. 2021;11 (3) :7100-7106. Publisher's VersionAbstract

The stability and strength of slender Reinforced Concrete (RC) columns depend directly on the flexural stiffness EI, which is a major parameter in strain calculations including those with bending and axial load. Due to the non-linearity of the stress-strain curve of concrete, the effective bending stiffness EI always remains variable. Numerical simulations were performed for square and L-shaped reinforced concrete sections of slender columns subjected to an eccentric axial force to estimate the variation of El resulting from the actual behavior of the column, based on the moment-curvature relationship. Seventy thousand (70000) hypothetical slender columns, each with a different combination of variables, were used to investigate the main variables that affect the EI of RC slender columns. Using linear regression analysis, a new simple and linear expression of EI was developed. Slenderness, axial load level, and concrete strength have been identified as the most important factors affecting effective stiffness. Finally, the comparison between the results of the new equation and the methods proposed by ACI-318 and Euro Code-2 was carried out in connection with the experimental results of the literature. A good agreement of the results was found.

Rahem A, Yahiaoui D, Lahbari N, Bouzid T. Effect of Masonry Infill Walls with Openings on Nonlinear Response of Steel Frames. Civil Engineering Journal [Internet]. 2021;7 (2). Publisher's VersionAbstract

The infill walls are usually considered as nonstructural elements and, thus, are not taken into account in analytical models. However, numerous researches have shown that they can significantly affect the seismic response of the structures. The aim of the present study is to examine the role of masonry infill on the damage response of steel frame without and with various types of openings systems subjected to nonlinear static analysis and nonlinear time history analysis. For the purposes of the above investigation, a comprehensive assessment is conducted using twelve typical types of steel frame without masonry, with full masonry and with different heights and widths of openings. The results revealed that the influence of the successive earthquake phenomenon on the structural damage is larger for the infill buildings compared to the bare structures. Furthermore, when buildings with masonry infill are analyzed for seismic sequences, it is of great importance to account for the orientation of the seismic motion. The nonlinear static response indicated that the opening area has an influence on the maximal strength, the ductility and the initial rigidity of these frames. But the shape of the opening will not influence the global behavior. Then, the nonlinear time history analysis indicates that the global displacement is greatly decreased and even the behavior of the curve is affected by the earthquake intensity when opening is considered.

Guettafi N, Yahiaoui D, Abbeche K, Bouzid T. Performance Assessment of Interaction Soil Pile Structure Using the Fragility Methodology. Civil Engineering Journal [Internet]. 2021;7 (2). Publisher's VersionAbstract

This study aimed to investigate whether the seismic fragility and performance of interaction soil-pile-structure (ISPS) were affected by different parameters:  axial load, a section of the pile, and the longitudinal steel ratio of the pile were implanted in different type of sand (loose, medium, dense). In order to better understand the ISPS phenomena, a series of nonlinear static analysis have been conducted for two different cases, namely: (i) fixed system and (ii) ISPS system, to get the curves of the capacity of every parameter for developing the fragility curve. After a comparison of the numerical results of pushover analysis and fragility curves, the results indicate that these parameters are significantly influenced on lateral capacity, ductility and seismic fragility on the ISPS. The increasing in the axial load exhibit high probabilities of exceeding the damage state. The increase in pile section and longitudinal steel ratio, the effect of probability damage (low and high) are not only related to the propriety geometrically, but also related to the values of ductility and lateral capacity of the system.

Pages