Abstract:
In this paper, the analytical investigation of a new design including drain and source extensions is presented to assess the electrical behavior of cylindrical gate-all-around junctionless (GAAJ)
MOSFET for high performance RF and analog applications. Analytical models for drain current and performance parameters are derived incorporating the effect of two highly doped extension regions. Various analog and RF parameters like transconductance, cut-off frequency, drain current drivability, voltage gain and linearity characteristics have also been investigated. The proposed design shows excellent ability in improving the analog performance and provides a good solution to enhance the RF behavior and linearity of GAAJ MOSFET for low cost and high performance analog/RF applications. The proposed model results have been validated against the data obtained from a commercially available numerical device simulator. Moreover, the developed analytical approaches are easy to be implemented into microelectronic software simulators and therefore allow the study of the GAAJ-based deep submicron circuits
Publisher's Version