Citation:
Abstract:
In this paper, the role of introducing Germanium (Ge)/IGZO heterostructure in enhancing the Infrared (IR) photodetection properties of thin-film phototransistor (Photo- TFT) is presented. Numerical models for the investigated device are developed using ATLAS device simulator. The influence of Ge photosensitive layer thickness on the sensor IR photoresponse is carried out. It is revealed that the optimized IR Photo-TFT based on p-Ge/IGZO heterojunction can offer improved IR responsivity of 4.1×10(exp2) A/W, and over 10(exp6) of sensitivity. These improvements are attributed to the role of the introduced p-Ge/IGZO heterostructure in promoting IR photodetection ability and improved separation and transfer mechanisms of photo-exited electron/hole pairs. The photosensor is then implemented in an optical inverter gate circuit in order to assess its switching capabilities. It is found that the proposed phototransistor shows an improved optical gain thus indicating its excellent performance. Therefore, providing high IR responsivity and low dark noise effects, the optimized Ge/IGZO IR Photo-TFT can be a potential alternative photosensor for designing optoelectronic systems with high-performance and ultralow power consumption.