Efficiency Enhancement of a‐Si:H/c‐Si‐Based Radial Solar Cell by Optimizing the Geometrical and Electrical Parameters, ISSN / e-ISSN 1610-1642 / 1610-1642

Abstract:

In this paper, a new particle swarm optimization‐based approach is proposed for the geometrical optimization of the nanowires solar cells to achieve improved optical performance. The proposed hybrid approach combines the 3‐D numerical analysis using accurate solutions of Maxwell's equations and metaheuristic investigation to boost the solar cell total absorbance efficiency. Our purpose resides on modulating the electric field and increasing the light trapping capability by optimizing the radial solar cell geometrical parameters. Moreover, a comprehensive study of vertical core‐shell nanowire arrays optical parameters such as the integral absorption, reflection, and total absorbance efficiency is carried out, in order to reveal the optimized radial solar cells optical performance for low‐cost photovoltaic applications. We find that the proposed hybrid approach plays a crucial role in improving the nanowires solar cells optical performance, where the optimized design exhibits superior total absorbance efficiency and lower total reflection in comparison with those provided by the conventional planar design. The obtained results make the proposed global optimization approach valuable for providing high‐efficiency nanowires solar cells.

Publisher's Version

Last updated on 07/12/2022