Publications

Publications Internationales / Equipe RAP

Gourdache S, Bilami A, Barka K. A framework for spectrum harvesting in heterogeneous wireless networks integration. Journal of King Saud University - Computer and Information Sciences. 2019.Abstract

Today’s, and near future, communication networks rely heavily on capacity expansion to keep pace with the massive number of mobile devices and ever-increasing mobile traffic. This expansion can be achieved through three major ingredients, namely, adding more wireless-spectrum, efficient usage of this spectrum, and adequate networks’ architectures. In this paper, a proposition for integrating these three ingredients in a cognitive-radio-inspired framework is presented. The focus is on the integration of the idle spectrum resources of different wireless networks into a single mobile heterogeneous wireless network. This framework is based on a conceptual network-architecture articulated with a generic and cooperative spectrum-harvesting scheme. The former brings the necessary agility for such heterogeneous environments, the latter keeps the network supplied with the vital spectrum resources. In our proposal, we make use of cross-correlated sequences (CCSs) for context-aware events’ signaling purposes. This choice is motivated by the particularly interesting characteristics of CCSs, namely, duration shortness, robustness to bad radio conditions, detection rather than decoding, and low probability of collision. As an illustration, we propose a reporting and detection scheme, in the context of OFDMA systems, and provide performance results from simulations to validate our proposal.

Hedjazi D, Layachi F, Boubiche DE. A multi-agent system for distributed maintenance scheduling. Computers & Electrical Engineering. 2019;77 :1-11.Abstract

Due to the intrinsically geo-distributed subcontracting maintenance activity practice, the maintenance scheduling has for a long time been a major challenge in the industry. This research work presents a methodology to schedule the maintenance activities of geo-distributed assets. A multi-agent system based approach is proposed to enable the decision-making for the subcontractors in a distributed industrial environment under uncertainty. An auction based negotiation mechanism is designed to promote competition and cooperation among the different agents, and to obtain global good schedule.Compared to the Weighted Shortest Processing Time first–Heuristic–Earliest Due Date (WSPT-H-EDD) method, the experimental results show that the proposed approach is able to provide scheduling scheme with good performances in terms of Global Cost, Total Weighted Tardiness Cost and makespan.

Athmani S, Bilami A, Boubiche DE. EDAK: An Efficient Dynamic Authentication and Key Management Mechanism for heterogeneous WSNs. Future Generation Computer Systems. 2019;92 :789-799.Abstract

Securing the network communication represents one of the most important challenges in wireless sensor networks. The key distribution problem has been widely discussed in classical wireless sensor networks contrarily to heterogeneous ones. HWSNs (Heterogeneous Wireless Sensor Networks) have optimized the network capability and opened new security opportunities by introducing high resource capacity sensor nodes in the network. In this paper, an efficient dynamic authentication and key Management scheme is proposed for heterogeneous WSN. The main idea is to provide a single lightweight protocol for both authentication and key establishment while optimizing the security level. The key distribution algorithm is based on preexisting information to generate dynamic keys and does not require any secure channel and sharing phase which improves the security, energy efficiency and reduces the memory consumption. Experimental results have confirmed the performances of our mechanism compared to some of the existing security protocols.

Benayache A, Bilami A, Barkat S, Lorenz P, Taleb H. MsM: A microservice middleware for smart WSN-based IoT application. Journal of Network and Computer Applications. 2019;144 :138-154.Abstract

Actually, wireless sensor networks represent a substantial part in IoT. However, their limitation requires a special consideration in IoT applications. For their integration with the internet, it is necessary to adapt such networks using different middleware, with taking into account various challenges such as heterogeneity and interoperability.

Previously Service Oriented Architecture (SOA) was the suitable design, but with a better practice, a new design called microservice becomes the leader due to its high performance and its suitability for IoT applications.

In this paper, we first survey the most important middleware that have been proposed to handle WSN through IoT. Also, we discuss the most crucial microservices that handle different integration factors by making them supported by the proposed middleware. Our proposal is inspired from artificial neural network architecture to allow dynamic service interaction; it supports unlimited services with a regard to various device capabilities separately of the cloud technologies. Moreover, the evaluation of our design clearly shows that our middleware allows a lightweight WSN integration with IoT regarding to their limitations and requirements.

Akleylek S, Soysaldı M, Boubiche DE, Toral-Cruz H. A Novel Method for Polar Form of Any Degree of Multivariate Polynomials with Applications in IoT. Sensors (Basel). 2019;19 (4) :903.Abstract

Identification schemes based on multivariate polynomials have been receiving attraction in different areas due to the quantum secure property. Identification is one of the most important elements for the IoT to achieve communication between objects, gather and share information with each other. Thus, identification schemes which are post-quantum secure are significant for Internet-of-Things (IoT) devices. Various polar forms of multivariate quadratic and cubic polynomial systems have been proposed for these identification schemes. There is a need to define polar form for multivariate dth degree polynomials, where d ≥ 4 . In this paper, we propose a solution to this need by defining constructions for multivariate polynomials of degree d ≥ 4 . We give a generic framework to construct the identification scheme for IoT and RFID applications. In addition, we compare identification schemes and curve-based cryptoGPS which is currently used in RFID applications.

Boubiche DE, Imran M, Maqsood A, Shoaib M. Mobile crowd sensing – Taxonomy, applications, challenges, and solutions. Computers in Human Behavior. 2019;101 :352-370.Abstract

Recently, mobile crowd sensing (MCS) is captivating growing attention because of their suitability for enormous range of new types of context-aware applications and services. This is attributed to the fact that modern smartphones are equipped with unprecedented sensing, computing, and communication capabilities that allow them to perform more complex tasks besides their inherent calling features. Despite a number of merits, MCS confronts new challenges due to network dynamics, the huge volume of data, sensing task coordination, and the user privacy problems. In this paper, a comprehensive review of MCS is presented. First, we highlight the distinguishing features and potential advantages of MCS compared to conventional sensor networks. Then, a taxonomy of MCS is devised based on sensing scale, level of user involvement and responsiveness, sampling rate, and underlying network infrastructure. Afterward, we categorize and classify prominent applications of MCS in environmental, infrastructure, social, and behavioral domains. The core architecture of MCS is also described. Finally, we describe the potential advantages, determine and reiterate the open research challenges of MCS and illustrate possible solutions.

  •  
  • 1 of 4
  • »