Cooperation in distribution network has attracted the interest of researchers. In this study we analyse an inventory problem in distribution network, where we propose a cooperative platform that allow the members of the network to share and use local inventory of other members to meet their local demand. We develop a MIP models representing the traditional network and the network with the cooperative platform. Then we solve it using LINGO solver. We found that the proposed approach has reduced the total cost of the network and reduce the overstock and stock-out situation, which lead to improve the quality of service.
Due to advanced monitoring technologies including the plug-in of the cyber and physical layers on the Internet, cyber-physical systems are becoming more vulnerable than ever to cyberthreats leading to possible damage of the system. Consequently, many researchers have devoted to studying detection and identification of such threats in order to mitigate their drawbacks. Among used tools, Machine Learning (ML) has become dominant in the field due to many usability characteristics including the blackbox models availability. In this context, this paper is dedicated to the detection of cyberattacks in Smart Grid (SG) networks which uses industrial control systems (ICS), through the integration of ML models assembled on a small scale. More precisely, it therefore aims to study an electric traction substation system used for the railway industry. The main novelty of our contribution lies in the study of the behaviour of more realistic data than the traditional studies previously shown in the state of the art literature by investigating even more realistic types of attacks. It also emulates data analysis and a larger feature space under most commonly used connectivity protocols in today's industry such as S7Comm and Modbus.
The clean energy conversion characteristics of proton exchange membrane fuel cells (PEMFCs) have given rise to many applications, particularly in transportation. Unfortunately, the commercial application of PEMFCs is hampered by the early deterioration and low durability of the cells. In this case, accurate real-time condition monitoring plays an important role in extending the lifespan of PEMFCs through accurate planning of maintenance tasks. Accordingly, among the widely used modeling tools such as model-driven and data-driven, machine learning has received much attention and has been extensively studied in the literature. Small-scale machine learning (SML) and Deep Learning (DL) are subcategories of machine learning that have been exploited so far. In this context and since SML usually contains non-expansive approximators, this study was dedicated to improving its feature representations for better predictions. Therefore, a recurrent expansion experiment was conducted for several rounds to investigate a linear regression model under time series prognosis of PEMFCs. The results revealed that the prediction performance of SML tools under stationary conditions could be further improved.
The increase in electricity theft has become one of the main concerns of power distribution networks. Indeed, electricity theft could not only lead to financial losses, but also leads to reputation damage by reducing the quality of supply. With advanced sensing technologies of metering infrastructures, data collection of electricity consumption enables data-driven methods to emerge in such non-technical loss detections as an alternative to traditional experience-based human-centric approaches. In this context, such fraud prediction problems are generally a thematic of missing patterns, class imbalance, and higher level of cardinality where there are many possibilities that a single feature can assume. Therefore, this article is introduced specifically to solve data representation problem and increase the sparseness between different data classes. As a result, deeper representations than deep learning networks are introduced to repeatedly merge the learning models themselves into a more complex architecture in a sort of recurrent expansion. To verify the effectiveness of the proposed recurrent expansion of deep learning (REDL) approach, a realistic dataset of electricity theft is involved. Consequently, REDL has achieved excellent data mapping results proven by both visualization and numerical metrics and shows the ability of separating different classes with higher performance. Another important REDL feature of outliers correction has been also discovered in this study. Finally, comparison to some recent works also proved superiority of REDL model.
Proton Exchange Membrane Fuel Cells (PEMFCs) are a key challenger for the world’s future clean and renewable energy solution. Yet, fuel cells are susceptible to operating conditions and hydrogen impurities, leading to performance loss over time in service. Hence, performance degradation prediction is gaining attention recently for fuel cell system reliability. In this work, we present a knowledge transfer approach for online voltage drop prediction. A dual-path convolution neural network is proposed to extract linearity and non-linearity from historical data and performs multi-steps ahead prediction with uncertainty quantification. Online voltage prediction is then evaluated with and without knowledge transfer using two different PEMFC datasets. Results indicate that our proposed approach with transfer knowledge can predict the voltage drop accurately with a small uncertainty range compared to the conventional approach.
La surveillance est la fonction d'observer toutes activités humaine ou environnementales dans le but de superviser, contrôler ou même réagir sur un cas particulier; ce qu’on appelle la supervision ou le monitoring. La technologie de la radio-identification, connue sous l’abréviation RFID (de l’anglais Radio Frequency IDentification), est l’une des technologies utilisées pour récupérer des données à distance de les mémoriser et même de les traiter. C’est une technologie d’actualité et l’une des technologies de l’industrie 4.0 qui s'intègre dans de nombreux domaines de la vie quotidienne notamment la surveillance et le contrôle d’accès. L’objectif de cet article est de montrer comment protéger et surveiller en temps réel des zones industrielles critiques et de tous types d'accès non autorisés de toute personne (employés, visiteurs…) en utilisant la technologie RFID et cela à travers des exemples de simulation à l'aide d’un simulateur dédié aux réseaux de capteurs.
In this study, we investigate a production planning problem in hybrid manufacturing remanufacturing production system. The objective is the determine the best mix between the manufacturing of new products, and the remanufacturing of recovered products, based on economic and environmental considerations. It consists to determine the best manufacturing and remanufacturing plans to minimising the total economic cost (start-up and production costs of new and remanufactured products, storage costs of new and returned products and disposal costs) and the carbon emissions (new products, remanufactured products and disposed products). The hybrid system consists of a set of machines used to produce new products and remanufactured products of different grades (qualities). We assume that remanufacturing is more environmentally efficient, because it allows to reduce the disposal of used products. A multi-objective mathematical model is developed, and a non dominated sorting genetic algorithm (NSGA-II) based approach is proposed. Numerical experience is presented to study the impact of carbon emissions generated by new, remanufactured and disposed products, over a production horizon of several periods.
Purpose
The purpose of this paper is to develop a model for sustainable manufacturing by adopting a combined approach using AHP, fuzzy TOPSIS and fuzzy EDAS methods. The proposed model aims to identify and prioritize the sustainable factors and technical requirements that help in improving the sustainability of manufacturing processes.
Design/methodology/approach
The proposed approach integrates both AHP, Fuzzy EDAS and Fuzzy TOPSIS. AHP method is used to generate the weights of the sustainable factors. Fuzzy EDAS and Fuzzy TOPSIS are applied to rank and determine the application priority of a set of improvement approaches. The ranks carried out from each MCDM approach is assessed by computing the spearman's correlation coefficient.
Findings
The results reveal the proposed model is efficient in sustainable factors and the technical requirements prioritizing. In addition, the results carried out from this study indicate the high efficiency of AHP, Fuzzy EDAS and Fuzzy TOPSIS in decision making. Besides, the results indicate that the model provides a useable methodology for managers' staff to select the desirable sustainable factors and technical requirements for sustainable manufacturing.
Research limitations/implications
The main limitation of this paper is that the proposed approach investigates an average number of factors and technical requirements.
Originality/value
This paper investigates an integrated MCDM approach for sustainable factors and technical requirements prioritization. In addition, the presented work pointed out that AHP, Fuzzy EDAS and Fuzzy TOPSIS approach can manipulate several conflict attributes in a sustainable manufacturing context.