Publications by Year: 2021

2021
Zuluaga-Gomez, J, et al. 2021. “A CNN-based methodology for breast cancer diagnosis using thermal images”. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 9 (2) : 131-145. Publisher's Version Abstract

A recent study from GLOBOCAN disclosed that during 2018 two million women worldwide had been diagnosed with breast cancer. Currently, mammography, magnetic resonance imaging, ultrasound, and biopsies are the main screening techniques, which require either, expensive devices or personal qualified; but some countries still lack access due to economic, social, or cultural issues. As an alternative diagnosis methodology for breast cancer, this study presents a computer-aided diagnosis system based on convolutional neural networks (CNN) using thermal images. We demonstrate that CNNs are faster, reliable and robust when compared with different techniques. We study the influence of data pre-processing, data augmentation and database size on several CAD models. Among the 57 patients database, our CNN models obtained a higher accuracy (92%) and F1-score (92%) that outperforms several state-of-the-art architectures such as ResNet50, SeResNet50, and Inception. This study exhibits that a CAD system that implements data-augmentation techniques reach identical performance metrics in comparison with a system that uses a bigger database (up to 33%) but without data-augmentation. Finally, this study proposes a computer-aided system for breast cancer diagnosis but also, it stands as baseline research on the influence of data-augmentation and database size for breast cancer diagnosis from thermal images with CNNs

Gougam, Fawzi, et al. 2021. “Fault prognostics of rolling element bearing based on feature extraction and supervised machine learning: Application to shaft wind turbine gearbox using vibration signal”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235 (20). Publisher's Version Abstract

Renewable energies offer new solutions to an ever-increasing energy demand. Wind energy is one of the main sources of electricity production, which uses winds to be converted to electrical energy with lower cost and environment saving. The major failures of a wind turbine occur in the bearings of high-speed shafts. This paper proposes the use of optimized machine learning to predict the Remaining Useful Life (RUL) of bearing based on vibration data and features extraction. Significant features are extracted from filtered band-pass of the squared raw signal where the health indicators are automatically selected using relief technique. Optimized Adaptive Neuro Fuzzy Inference System (ANFIS) by Partical Swarm Optimization (PSO) is used to model the non linear degradation of the extracted indicators. The proposed approach is applied on experimental setup of wind turbine where the results show its effectiveness for RUL estimation.

Derdour, Khedidja, Leila-Hayet Mouss, and Rafik Bensaadi. 2021. “Multiple Features Extraction and Classifiers Combination Based Handwriting Digit Recognition”. International Journal on Electrical Engineering and Informatics 13 (1). Publisher's Version Abstract

In this paper, we present a system for handwriting digit recognition using different invariant features extraction and multiple classifiers. In the feature extraction we use four types: cavities, Zernike moments, Hu moments, Histogram of Gradient (HOG). Firstly, the features are used independently by five classifiers: K-nearest neighbor (KNN), Support Vector Machines (SVM) one versus one, SVM one versus all, Decision Tree, MLP. Then to achieve the best possible classification performance in terms of recognition rate, three methods of classifiers Combination rule employed: majority vote, Borda count and maximum rule. Experiments are performed on the well-known MNIST database of handwritten digits. The results demonstrated that the combination of KNN using HOG features with SVMOVA using Zernike moments by Borda count rule have considered to be good based on a geometric transformation invariance.

Modern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.

To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with several naturally occurring faults can be correctly undertaken via the cooperation of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first outlines different failure modes to which all photovoltaic systems are subjected, in addition to the essential integrated detection methods and technologies. Then, data-driven paradigms, and their contribution to solving this prediction problem, are also explored. Accordingly, this review primarily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the extension of machine learning to knowledge-driven approaches, including generative models such as adversarial networks and transfer learning. Finally, this review provides insights into different works to highlight various operating conditions and different numbers and types of failures, and provides links to some publicly available datasets in the field. The clear organization of the abundant information on this subject may result in rigorous guidelines for the trends adopted in the future.

Benayache, Ayoub, et al. 2021. “Industrial IoT middleware using a multi-agent system for consistency-based diagnostic in cement factory”. International Journal of Autonomous and Adaptive Communications Systems 14 (3). Publisher's Version Abstract

With the evolution of the internet of things (IoT), and due to its significant need in the industry, Industrial IoT (IIoT) becomes the suitable naming for this accompaniment. IIoT changed the view of the industry intelligently and over the internet. This overlapping of IoT and industry requires special treatment when systems deal with heterogeneous devices in a distributed environment and complex tasks. In this paper, we propose a middleware solution based on multi-agents system (MAS) to handle the distributed control of complex systems autonomously in an industrial environment. The proposed middleware enables machine-to-machine (M2M) communications among the system's components. In this work, we also addressed the distributed diagnostic for real industrial system using MAS with a new suitable communication strategy to support the heterogeneity and interoperability issued in IIoT and assure real-time monitoring and control. Finally, we present a qualitative evaluation of our solution on real case study (cement factory).

In the last years, predictive maintenance has gained a central position in condition-based maintenance tasks planning. Machine learning approaches have been very successful in simplifying the construction of prognostic models for health assessment based on available historical labeled data issued from similar systems or specific physical models. However, if the collected samples suffer from lack of labels (small labeled dataset or not enough samples), the process of generalization of the learning model on the dataset as well as on the newly arrived samples (application) can be very difficult. In an attempt to overcome such drawbacks, a new deep supervised learning approach is introduced in this paper. The proposed approach aims at extracting and learning important patterns even from a small amount of data in order to produce more general health estimator. The algorithm is trained online based on local receptive field theories of extreme learning machines using data issued from a propulsion system simulator. Compared to extreme learning machine variants, the new algorithm shows a higher level of accuracy in terms of approximation and generalization under several training paradigms.

Chouhal, Ouahiba, Rafik Mahdaoui, and Leila-Hayet Mouss. 2021. “SOA-based distributed fault prognostic and diagnosis framework: an application for preheater cement cyclones”. International Journal of Internet Manufacturing and Services 8 (1). Publisher's Version Abstract

Complex engineering manufacturing systems require efficient online fault diagnosis methodologies to improve safety and reduce maintenance costs. Traditionally, diagnosis and prognosis approaches are centralised, but these solutions are difficult to implement on distributed systems; whereas a distributed approach of multiple diagnosis and prognosis agents can offer a solution. Also, controlling process plant from a remote location has several benefits including the ability to track and to assist in solving a problem that might arise. This paper presents a distributed and over prognosis and diagnosis approach for physical systems basing on multi agent system and service-oriented architecture. Specifics prognostic and diagnostic procedures and key modules of the architecture for web service-based distributed fault prognostic and diagnosis framework are detailed and developed for the preheater cement cyclones in the workshop of SCIMAT clinker. The experimental case study, reported in the present paper, shows encouraging results and fosters industrial technology transfer.

Proposition d’un tutoriel pour une usine apprenante (Textile de Batna)
Ag Hameyni, Abdoulmadjid, Samia Aitouche, and Karima Aksa. 2021. Proposition d’un tutoriel pour une usine apprenante (Textile de Batna). universitaires europeennes. Abstract

Le contexte actuel de globalisation et de concurrence accrue a entrainé les firmes à reconsidérer leurs stratégies d’internationalisation et à réexaminer les opportunités offertes et les risques associés. Les alliances stratégiques apparaissent ainsi comme des vecteurs privilégiés notamment par les firmes multinationales pour leurs nouvelles implantations.La communication et le travail d’équipe sont parmi les compétences les plus récurrents associés à une connaissance des sciences de l’ingénieur. Cependant, leur application n’est pas simple, en raison de l’absence d’approche pédagogique contribuant à développer des connaissances fondées sur l’expérience.Dans ce travail nous avons défini qu’est-ce qu’une organisation apprenante, qu’est-ce qu’un tutoriel et pourquoi un tutoriel personnalisé dans un métier, ses différentes formes et les démarches pour l’élaboration d’un tutoriel.Après nous avons donné une présentation de l’entreprise qu’est Textile Batna. Nous avons conçu un tutoriel pour l’entreprise sous forme d’un site Web. Pour cela, le langage UML a été utilisé. Les fonctionnalités du tutoriel ont été présentées.

Recherche Documentaire et Conception du Mémoire

Le 4ème semestre d’un mastère de recherche est consacré à la réalisation d’un travail de recherche qui sera traduit par une conception et une rédaction d'un mémoire de fin d'études et finalement la préparation d'un exposé oral puis une soutenance.Le mémoire de fin d’études est une étape très importante dans la voie des études universitaires, car sans elle, l'étudiant ne peut pas acquérir la qualité de diplômé.Alors, dans ce petit livre vous pouvez trouver un petit guide sur: - La façon d'organisation de votre mémoire. - La présentation de votre soutenance. - La rédaction d'un travail de recherche. - La préparation d'un poster.Le 4ème semestre d’un mastère de recherche est consacré à la réalisation d’un travail de recherche qui sera traduit par une conception et une rédaction d'un mémoire de fin d'études et finalement la préparation d'un exposé oral puis une soutenance.Le mémoire de fin d’études est une étape très importante dans la voie des études universitaires, car sans elle, l'étudiant ne peut pas acquérir la qualité de diplômé.Alors, dans ce petit livre vous pouvez trouver un petit guide sur:

  • La façon d'organisation de votre mémoire.
  • La présentation de votre soutenance.
  • La rédaction d'un travail de recherche.
  • La préparation d'un poster.
CAPTEURS INTELLIGENTS
Aksa, Karima. 2021. CAPTEURS INTELLIGENTS. Bookelis . Abstract

L'évolution récente des moyens de la communication sans fil a permet la manipulation de l'information à travers des unités de calculs portables, appelés capteurs. Ces derniers, qui ont des caractéristiques particulières, sont capables de récolter, de traiter et de transmettre des données environnementales d'une manière autonome.

Dans ce livre sont introduites les connaissances de base nécessaires à la bonne compréhension des capteurs intelligents, des réseaux de capteurs et les différents types protocoles de routage spécifiques aux réseaux de capteurs. Nous fournirons ainsi les définitions généralement acceptées par ce type de réseau. Nous aborderons également par une description succincte les principales caractéristiques, contraintes et facteurs conceptuels qui surviennent dans ces réseaux. Nous présenterons ensuite les différentes orientations prises aux applications des réseaux de capteurs.

Haoues, Mohamed, Mohammed Dahane, and Nadia-Kenza Mouss. 2021. “Capacity Planning With Outsourcing Opportunities Under Reliability And Maintenance Constraints. Status”. International Journal of Industrial and Systems Engineering 37 (3) : 382-409. Publisher's Version Abstract

This paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer's company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.

Pages