De nos jours, la plupart des moteurs d’analyse de solutions anti-malware sont heuristiques. Ils classent les objets, les flux de données ainsi que les zones mémoires comme bénins ou malveillants en fonction de leur comportement. La plupart des fabricants d'antivirus reconnaissent que l'approche heuristique permet d'atteindre jusqu'à 90% d'efficacité en termes de taux de détection, mais consomme davantage de ressources systèmes : de tels moteurs anti-malware, disponibles en open-source, sont extrêmement inefficaces en termes d’utilisation de ressources système car ils font souvent appel à des algorithmes d'apprentissage automatique. Pour réduire cette charge système, il est fortement recommandé d'utiliser la détection par signature statique, qui permet de filtrer à elle seule la majorité des échantillons de programmes malveillants connus, en conjonction avec les technologies de détection heuristiques et celles basées sur le cloud. Dans ce travail, nous présentons un scanner de signatures rapide pour la détection de programmes malveillants, basé sur une version améliorée de l’algorithme Aho-Corasick pour la recherche de chaînes de caractères (ou motifs), conçue pour pouvoir bénéficier des techniques de vectorisation qui ajoutent une forme de parallélisme de données au code de l’algorithme. La solution proposée est implémentée en utilisant le jeu d’instructions d’Intel® Advanced Vector Extensions (AVX2).
Cette thèse propose de concevoir et réaliser un système de reconnaissance automatique de la parole destiné à commander à distance un système audiovisuel à savoir : un Téléviseur. Le système global "bout en bout" se scinde en deux blocs : le premier cherche à extraire les meilleures caractéristiques à partir du signal vocal d’entrée. A cet effet, plusieurs techniques d’extraction de caractéristiques vont être examinées et testées. Concernant le deuxième bloc, nous mettons en évidence une multitude de techniques relevant du domaine de l’apprentissage profond, dont l’impact est d’adapter et de d’affirmer les caractéristiques extraites pour donner en final la classe de l’énoncé. La validation des différentes méthodologies présentées dans cette thèse a été effectuée sur la base de deux jeux de données réelles, le premier est tenu compte pour une évaluation initiale, tandis que le second est conçu exclusivement pour le système ASR proposé dans cette thèse. Les résultats obtenus ont certifié l’efficience des approches proposées. Le défi pour les travaux futurs est d’évaluer ce type de système dans des conditions plus réalistes avec des signaux vocaux issus des milieux bruités.
Dans cette thèse, nous nous sommes intéressés à un modèle de gestion des connaissances des entreprises industrielles. Certaines tâches manufacturières impliquent un niveau élevé de connaissance tacite des opérateurs qualifiés. L'industrie a besoin des méthodes fiables pour la capture et l'analyse de ces connaissances tacites afin qu'elles puissent être partagées et sans aucune perte. Nous proposons, un modèle de gestion contenant deux processus de gestion, le premier processus est la capitalisation des connaissances basée sur une tâche industrielle. Nous avons utilisé une combinaison de deux méthodologies : une méthodologie d’ingénierie de connaissances CommonKADS et une méthodologie d’élicitation des connaissances MACTAK. Dans la phase de modélisation, nous avons utilisé deux différentes techniques de modélisation, une modélisation basée sur les connaissances d’expert et la deuxième une représentation ontologique. Ce modèle facilite la capture des connaissances d’experts et transforme les connaissances tacites en explicites avec une maximisation des règles de production. Le deuxième processus concerne le partage des connaissances à base d’une ontologie des Tâches Manufacturières MATO en identifiant un ensemble des concepts de fabrication et leurs relations, cette ontologie proposée facilite le partage des connaissances entre les tâches de fabrication et aide à partager et à réutiliser les connaissances durant l'exécution des tâches. Ensuite, une application proposée pour le diagnostic de système d’alarme dans une centrale thermique a été présentée pour démontrer l’importance et l’apport de l’ontologie.
Améliorer la performance d’un système de reconnaissance de formes fait l’objet de recherche dans de nombreuses disciplines. On obtient cette amélioration par l’optimisation dans les différents partis du système de reconnaissance de formes : les prétraitements, l’extraction des paramètres caractéristique (primitives), la classification. Les travaux de recherche présentés dans cette thèse abordent le problème de la reconnaissance des chiffres arabe imprimés et manuscrits. L’objectif principal de ce travail est l’amélioration de la performance en terme de taux de reconnaissance par l'application d’un système multi classificateur (MCS). Différents classifieurs sont utilisés (KPPV, PMC, SVM, LDA, Arbre de décision, Naïve Bayesien, Pseudo inverse), à l’aide de différents types de vecteurs de caractéristiques extraite de l'image. Enfin, comme les performances de MCS dépendent des performances des classifieurs appliquée (les performances individuelles des classifieurs), et comme la performance d’un classifieur dépend ainsi des caractéristiques utilisé l'optimisation de l’extractions des primitives pertinentes est également abordée dans la thèse. Nous avons réalisé plusieurs simulations pour éprouver les classifications, en introduisant des améliorations dans les paramètres caractéristiques et en faisant des combinaisons de classifieurs. Dans une première partie, nous montrons l’intérêt de l’utilisation des paramètres caractéristique pertinente, à l’aide des classifieur individuelle (séparé, indépendants) comme source d’inspiration pour la conception de nouveaux paramètres. Nous proposons en particulier une amélioration de primitives pour la caractérisation des chiffres. On montre qu’il est possible de développer une solution efficace, à moindre coût en terme de réduction de vecteur caractéristique et transformation géométrique. Donc, Le système développé s’articule autour de quatre modules distincts. Un module de prétraitements, un d’extraction des paramètres caractéristique, un module de reconnaissance (classification) et un module de combinaison de classifieurs. Ce dernier est chargé de fusionner les sorties (décisions) de chaque classifieur basant sur des méthodes (règles) de fusion. Les résultats obtenus sur les bases des chiffres imprimés et la base MNIST des chiffres manuscrits sont prometteurs. Cette thèse apporte quelques contributions pour faire avancer notre compréhension dans ce domaine de recherche en pleine expansion
Dans ce travail de thèse, nous avons proposé un système de supervision appliqué sur un robot manipulateur à deux degrés de liberté. La supervision est utilisée pour assurer la reconfiguration en temps réel du robot. Dans ce système nous avons utilisé une nouvelle méthode de détection de défaut (FD) de frottement visqueux du robot supervisé combinée avec un module de commande tolérante aux défauts (FTC).Le premier module, basé sur une méthode de traitement appliquée sur des résidus, va permettre la détection de défaut pour bien estimer les corrections nécessaires du deuxième module. Une évaluation de l’effet de défaut durant la supervision a été faite. Par ailleurs, le protocole TCP pour le transfert des données entre le robot superviseur et le robot supervisé a été utilisé. Les résultats de simulation montrent que la méthode proposée corrige l’effet de défaut en utilisant les données qui arrivent d’un robot superviseur à distance. Ensuite, nous avons proposé une implémentation matérielle sur cible FPGA de l’algorithme de supervision dont le but est de valider notre contribution et d’assurer un traitement en temps réel dans le cas où il y a des robots réels. Par ailleurs, une étude comparative entre les performances des deux implémentations a été effectuée