Publications by Type: Journal Article

2019
Chouhal, Ouahiba, Rafik Mahdaoui, and Leila-Hayet Mouss. 2019. “Distributed Control And Monitoring Based On Cooperating Agents: An Application For Manufacturing System”. Journal of New Technology and Materials 8 (3) : 25-28. Publisher's Version Abstract

Control and monitoring of current manufacturing systems has become increasingly a complex problem. To expand their reliability we propose in this work a distributed approach for control and monitoring using the Multi Agents Systems. This approach is based on the decomposition of the complex system into subsystems easier to manage, and the design of several agents each one on these agents is dedicated to a particular task. A software application supporting this approach is developed for the cement clinker system of the Ain Touta cement plant. It is chosen to test the approach on real data. The results show that our distributed approach produces better results than the centralized health monitoring and control.

Chouhal, Ouahiba, Rafik Mahdaoui, and Leila-Hayet Mouss. 2019. “SOA-based distributed fault prognostic and diagnosis framework: an application for preheater cement cyclones”. International Journal of Internet Manufacturing and Services 8 (1). Publisher's Version Abstract

Complex engineering manufacturing systems require efficient online fault diagnosis methodologies to improve safety and reduce maintenance costs. Traditionally, diagnosis and prognosis approaches are centralised, but these solutions are difficult to implement on distributed systems; whereas a distributed approach of multiple diagnosis and prognosis agents can offer a solution. Also, controlling process plant from a remote location has several benefits including the ability to track and to assist in solving a problem that might arise. This paper presents a distributed and over prognosis and diagnosis approach for physical systems basing on multi agent system and service-oriented architecture. Specifics prognostic and diagnostic procedures and key modules of the architecture for web service-based distributed fault prognostic and diagnosis framework are detailed and developed for the preheater cement cyclones in the workshop of SCIMAT clinker. The experimental case study, reported in the present paper, shows encouraging results and fosters industrial technology transfer.

Mahdaoui, Rafik, et al. 2019. “A Temporal Neuro-Fuzzy System for Estimating Remaining Useful Life in Preheater Cement Cyclones”. International Journal of Reliability, Quality and Safety Engineering 26 (3). Publisher's Version Abstract

Fault prognosis in industrial plants is a complex problem, and time is an important factor for the resolution of this problem. The main indicator for the task of fault prognosis is the estimate of remaining useful life (RUL), which essentially depends on the predicted time to failure. This paper introduces a temporal neuro-fuzzy system (TNFS) for performing the fault prognosis task and exactly estimating the RUL of preheater cyclones in a cement plant. The main component of the TNFS is a set of temporal fuzzy rules that have been chosen for their ability to explain the behavior of the entire system, the components’ degradation, and the RUL estimation. The benefit of introducing time in the structure of fuzzy rules is that a local memory of the TNFS is created to capture the dynamics of the prognostic task. More precisely, the paper emphasizes improving the performance of TNFSs for prediction. The RUL estimation process is broken down into four generic processes: building a predictive model, selecting the most critical parameters, training the TNFS, and predicting RUL through the generated temporal fuzzy rules. Finally, the performance of the proposed TNFS is evaluated using a real preheater cement cyclone dataset. The results show that our TNFS produces better results than classical neuro-fuzzy systems and neural networks.

Mohyiddine, Soltani, Aouag Hichem, and Mouss Mohamed Djamel. 2019. “An integrated framework using VSM, AHP and TOPSIS for simplifying the sustainability improvement process in a complex manufacturing process, ISSN 1726-0531”. Journal of Engineering Design and Technology. Publisher's Version Abstract
Purpose The purpose of this paper is to propose an integrated approach for assessing the sustainability of production and simplifying the improvement tasks in complex manufacturing processes. Design/methodology/approach The proposed approach has been investigated the integration of value stream mapping (VSM), analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS). VSM is used as a basic structure for assessing and improving the sustainability of the manufacturing process. AHP is used for weighting the sustainability indicators and TOPSIS for prioritizing the operations of a manufacturing process regarding the improvement side. Findings The results carried out from this study help the managers’ staff in organizing the improvement phase in the complex manufacturing processes through computing the importance degree of each indicator and determining the most influential operations on the production. Research limitations/implications The major limitations of this paper are that one case study was considered. In addition, to an average set of sustainability indicators that have been treated. Originality/value The novelty of this research is expressed by the development of an extended VSM in complex manufacturing processes. In addition, the proposed approach contributes with a new improvement strategy through integrating the multi-criteria decision approaches with VSM method to solve the complexity of the improvement process from sustainability viewpoints.
Mohammed, Haoues, Dahane Mohammed, and Mouss Nadia Kinza. 2019. “Optimization of single outsourcer–single subcontractor outsourcing relationship under reliability and maintenance constraints, ISSN / e-ISSN 1735-5702 / 2251-712X”. Journal of Industrial Engineering International volume Vol 15 (Issue 3) : 395–409. Publisher's Version Abstract
In this paper, we focus on outsourcing activities optimization problem in single period setting. In some situations, capacity planning or outsourcing is a one-time event and can be modeled as a single period problem. The aim of this research is to balance the trade-off between two echelons of a supply chain consisting of a single outsourcer and a single subcontractor. Each part is composed of a failure-prone single machine that produces one product type to satisfy market requirements. The outsourcer’s manufacturing system is not able to satisfy the demand; in this case, outsourcing is allowed to recover the lack of capacity. We consider that the subcontractor can satisfy the demands of strategic clients and rent his machine for the outsourcer under a win–win partnership contract. We assume that the hazard failure rate depends on time and the adopted manufacture rate. When unforeseen failures occur, minimal repairs are implemented. Overhaul can be performed to reduce the degradation effects. Hence, we develop a mathematical model to define a profitability interval so that both parties of supply chain can be considered as winners. We seek to determine the contract parameters that suit both parties (duration, start and end dates, the production and outsourcing rates). Then, we develop an exact algorithm to solve the problem of single period optimization, which offers a better execution time through a series of test problems. Finally, we consider a sensitivity analysis based on outsourcing parameters (cost, periodicities, etc) to analyze their effects on partial costs and individual profit of each part, as well as the total profit generated by the system.
Hanane, Zermane, Kasmi Rached, and Aitoche Samia. 2019. “Supervision of an Industrial Process using Artificial Intelligence, ISSN / e-ISSN 2347-6982 / 2349-204X”. International Journal of Industrial Electronics and Electrical Engineering Vol 7 (Issue 6).
Mohyiddine, Soltani, Aouag Hichem, and Mouss Med Djamel. 2019. “Enhancement of the competitiveness and the financial capability of a manufacturing process through a new Value Stream Mapping approach, ISSN / e-ISSN 1746-6474 / 1746-6482”. International Journal of Productivity and Quality Management 1 (1) : 1. Publisher's Version Abstract
The organisations having a futuristic look and aiming to impose their presence in the industrial field for a long possible term, are seeking for finding solutions linked to controlling their cash flow and assessing their competitiveness performances. Therefore, the purpose of this paper is to propose a new quality and cost value stream mapping for monitoring the costs consumption and assessing the competitiveness of a company. We use three key concepts namely life cycle costing for estimation of the most influential costs on the manufacturing process, the weighted DPMO and Sigma level for assessing the quality level and the competitiveness of the company. Finally, the data obtained are mapped using value stream mapping method for enabling the determination of dysfunctions in the cost and quality context.
Soltani, Mohyiddine, Aouag Hichem, and Mouss Med Djamel. 2019. “An integrated framework using VSM, AHP and TOPSIS for simplifying the sustainability improvement process in a complex manufacturing process, ISSN 1726-0531”. Journal of Engineering, Design and Technology Volume 17 ( Issue 6). Publisher's Version Abstract
Purpose The purpose of this paper is to propose an integrated approach for assessing the sustainability of production and simplifying the improvement tasks in complex manufacturing processes. Design/methodology/approach The proposed approach has been investigated the integration of value stream mapping (VSM), analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS). VSM is used as a basic structure for assessing and improving the sustainability of the manufacturing process. AHP is used for weighting the sustainability indicators and TOPSIS for prioritizing the operations of a manufacturing process regarding the improvement side. Findings The results carried out from this study help the managers’ staff in organizing the improvement phase in the complex manufacturing processes through computing the importance degree of each indicator and determining the most influential operations on the production. Research limitations/implications The major limitations of this paper are that one case study was considered. In addition, to an average set of sustainability indicators that have been treated. Originality/value The novelty of this research is expressed by the development of an extended VSM in complex manufacturing processes. In addition, the proposed approach contributes with a new improvement strategy through integrating the multi-criteria decision approaches with VSM method to solve the complexity of the improvement process from sustainability viewpoints.
Naima, Zerari, et al. 2019. “Bidirectional deep architecture for Arabic speech recognition, e-ISSN 2299-1093”. Open Computer Science Volume 9 (Issue 1) : 92-102. Publisher's Version Abstract
Nowadays, the real life constraints necessitates
controlling modern machines using human intervention
by means of sensorial organs. The voice is one of the human
senses that can control/monitor modern interfaces.
In this context, Automatic Speech Recognition is principally
used to convert natural voice into computer text as
well as to perform an action based on the instructions
given by the human. In this paper, we propose a general
framework for Arabic speech recognition that uses Long
Short-Term Memory (LSTM) and Neural Network (Multi-
Layer Perceptron: MLP) classifier to cope with the nonuniform
sequence length of the speech utterances issued
fromboth feature extraction techniques, (1)Mel Frequency
Cepstral Coefficients MFCC (static and dynamic features),
(2) the Filter Banks (FB) coefficients. The neural architecture
can recognize the isolated Arabic speech via classification
technique. The proposed system involves, first, extracting
pertinent features from the natural speech signal
using MFCC (static and dynamic features) and FB. Next,
the extracted features are padded in order to deal with the
non-uniformity of the sequences length. Then, a deep architecture
represented by a recurrent LSTM or GRU (Gated
Recurrent Unit) architectures are used to encode the sequences
ofMFCC/FB features as a fixed size vector that will
be introduced to a Multi-Layer Perceptron network (MLP)
to perform the classification (recognition). The proposed
system is assessed using two different databases, the first
one concerns the spoken digit recognition where a comparison
with other related works in the literature is performed,
whereas the second one contains the spoken TV
commands. The obtained results show the superiority of
the proposed approach.
Naima, Zerari, et al. 2019. “Bidirectional deep architecture for Arabic speech recognition.e, e-ISSN 2299-1093”. Open Computer Science 9 (1) : pp. 92-102. Publisher's Version Abstract
Nowadays, the real life constraints necessitates controlling modern machines using human intervention by means of sensorial organs. The voice is one of the human senses that can control/monitor modern interfaces. In this context, Automatic Speech Recognition is principally used to convert natural voice into computer text as well as to perform an action based on the instructions given by the human. In this paper, we propose a general framework for Arabic speech recognition that uses Long Short-Term Memory (LSTM) and Neural Network (Multi-Layer Perceptron: MLP) classifier to cope with the nonuniform sequence length of the speech utterances issued fromboth feature extraction techniques, (1)Mel Frequency Cepstral Coefficients MFCC (static and dynamic features), (2) the Filter Banks (FB) coefficients. The neural architecture can recognize the isolated Arabic speech via classification technique. The proposed system involves, first, extracting pertinent features from the natural speech signal using MFCC (static and dynamic features) and FB. Next, the extracted features are padded in order to deal with the non-uniformity of the sequences length. Then, a deep architecture represented by a recurrent LSTM or GRU (Gated Recurrent Unit) architectures are used to encode the sequences of MFCC/FB features as a fixed size vector that will be introduced to a Multi-Layer Perceptron network (MLP) to perform the classification (recognition). The proposed system is assessed using two different databases, the first one concerns the spoken digit recognition where a comparison with other related works in the literature is performed, whereas the second one contains the spoken TV commands. The obtained results show the superiority of the proposed approach.
Zermane, Hanane, Kasmi Rached, and Samia Aitouche. 2019. “Supervision of an Industrial Process using Artificial Intelligence, ISSN / e-ISSN 2347-6982 / 2349-204X”. International Journal of Industrial Electronics and Electrical Engineering Vol 7 (Issue 6). Publisher's Version Abstract
Process controls (basic as well as advanced) are implemented within the process control system, which may mean a distributed control system (DCS), programmable logic controller (PLC), and/or a supervisory control computer. DCSs and PLCs are typically industrially hardened and fault-tolerant. Supervisory control computers are often not hardened or faulttolerant, but they bring a higher level of computational capability to the control system, to host valuable, but not critical , advanced control applications. Advanced controls may reside in either the DCS or the supervisory computer, depending on the application. Basic controls reside in the DCS and its subsystems, including PLCs. Because we usually deal with real - world systems with real - world constraints (cost, computer resources, size, weight, power, heat dissipation, etc.), it is understood that the simplest method to accomplish a task is the one that should be used. Experts usually rely on common sense when they solve problems. They also use vague and ambiguous terms. Other experts have no difficulties with understanding and interpreting this statement because they have the background to hearing problems described like this. However, a knowledge engineer would have difficulties providing a computer with the same level of understanding. In a complex industrial process, how can we represent expert knowledge that uses vague and fuzzy terms in a computer to control it? In this context, the application is developed to control the pretreatment and pasteurization station of milk localized in Batna (Algeria) by adopting a control approach based on expert knowledge and fuzzy logic. Keywords - Intelligent Control; Data Acquisition; Industrial Process Control; Fuzzy Control
Ouahiba, Chouhal, Mahdaoui Rafik, and Mouss Leila Hayet. 2019. “Distributed control and monitoring based on cooperating agents: an application for manufacturing system, ISSN / e-ISSN 2170-161X / 2488-2082”. Journal of New Technology and Materials Vol 8 (issue 3) : pp. 25-28. Publisher's Version Abstract
Control and monitoring of current manufacturing systems has become increasingly a complex problem. To expand their reliability we propose in this work a distributed approach for control and monitoring using the Multi Agents Systems. This approach is based on the decomposition of the complex system into subsystems easier to manage, and the design of several agents each one on these agents is dedicated to a particular task. A software application supporting this approach is developed for the cement clinker system of the Ain Touta cement plant. It is chosen to test the approach on real data. The results show that our distributed approach produces better results than the centralized health monitoring and control.
Ouahiba, Chouhal, Mahdaoui Rafik, and Mouss Leila Hayet. 2019. “SOA-based distributed fault prognostic and diagnosis framework: An application for preheater cement cyclones, ISSN / e-ISSN 1751-6048 / 1751-6056”. International Journal of Internet Manufacturing and Services. Publisher's Version Abstract
Complex engineering manufacturing systems require efficient on-line fault diagnosis methodologies to improve safety and reduce maintenance costs. Traditionally, diagnosis and prognosis approaches are centralized, but these solutions are difficult to implement on increasingly prevalent distributed, networked embedded systems; whereas a distributed approach of multiple diagnosis and prognosis agents can offer a solution. Also, having the capability to control and observe process plant of a manufacturing system from a remote location has several benefits including the ability to track and to assist in solving a problem that might arise. This paper presents a distributed and over prognosis and diagnosis approach for physical systems basing on multi agent system and Service-Oriented Architecture. Specifics prognostic and diagnostic procedures and key modules of the architecture for Web Service-based Distributed Fault Prognostic and Diagnosis framework are detailed and developed for the preheater cement cyclones in the workshop of SCIMAT clinker. The experimental case study, reported in the present paper, shows encouraging results and fosters industrial technology transfer.
Hassen, Bouzgou, and Gueymard Christian. 2019. “Fast short-term global solar irradiance forecasting with wrapper mutual information. Renewable Energy, ISSN 0960-1481”. Renewable Energy Volume 133 : pp. 1055-1065. Publisher's Version Abstract

Accurate solar irradiance forecasts are now key to successfully integrate the (variable) production from large solar energy systems into the electricity grid. This paper describes a wrapper forecasting methodology for irradiance time series that combines mutual information and an Extreme Learning Machine (ELM), with application to short forecast horizons between 5-min and 3-h ahead. The method is referred to as Wrapper Mutual Information Methodology (WMIM). To evaluate the proposed approach, its performance is compared to that of three dimensionality reduction scenarios: full space (latest 50 variables), partial space (latest 5 variables), and the usual Principal Component Analysis (PCA). Based on measured irradiance data from two arid sites (Madina and Tamanrasset), the present results reveal that the reduction of the historical input space increases the forecasting performance of global solar radiation. In the case of Madina and forecast horizons from 5-min to 30-min ahead, the WMIM forecasts have a better coefficient of determination (R2 between 0.927 and 0.967) than those using the next best performing strategy, PCA (R2 between 0.921 and 0.959). The Mean Absolute Percentage Error (MAP) is also better for WMIM [7.4–10.77] than for PCA [8.4–11.55]. In the case of Tamanrasset and forecasting horizons from 1-h to 3-h ahead, the WMIM forecasts have an R2 between 0.883 and 0.957, slightly better than the next best performing strategy (PCA) (R2 between 0.873 and 0.910). The Normalized Mean Squared Error (NMSE) is similarly better for WMIM [0.048–0.128] than for PCA [0.105–0.130]. It is also found that the ELM technique is considerably more computationally efficient than the more conventional Multi Layer Perceptron (MLP). It is concluded that the proposed mutual information-based variable selection method has the potential to outperform various other proposed techniques in terms of prediction performance.

2018
Mohyiddine, Soltani, Aouag Hichem, and Mouss Mohamed Djamel. 2018. “Enhancement of the competitiveness and the financial capability of a manufacturing process through a new Value Stream Mapping approach, ISSN / e-ISSN 1746-6474 / 1746-6482”. International Journal of Productivity and Quality Management. Publisher's Version Abstract
The organisations having a futuristic look and aiming to impose their presence in the industrial field for a long possible term, are seeking for finding solutions linked to controlling their cash flow and assessing their competitiveness performances. Therefore, the purpose of this paper is to propose a new quality and cost value stream mapping for monitoring the costs consumption and assessing the competitiveness of a company. We use three key concepts namely life cycle costing for estimation of the most influential costs on the manufacturing process, the weighted DPMO and Sigma level for assessing the quality level and the competitiveness of the company. Finally, the data obtained are mapped using value stream mapping method for enabling the determination of dysfunctions in the cost and quality context.
Lahcene, Guezouli, Bensakhria Mohamed, and Abdelhamid Samir. 2018. “Efficient Golden-Ball Algorithm Based Clustering to solve the Multi-Depot VRP With Time Windows, ISSN / e-ISSN 1942-3608 / 1942-3594”. International Journal of Applied Evolutionary Computation (IJAEC) Vol 9 (Issue 1) : 1-16. Publisher's Version Abstract
In this article, the authors propose a decision support system which aims to optimize the classical Capacitated Vehicle Routing Problem by considering the existence of multiple available depots and a time window which must not be violated, that they call the Multi-Depot Vehicle Routing Problem with Time Window (MDVRPTW), and with respecting a set of criteria including: schedules requests from clients, the capacity of vehicles. The authors solve this problem by proposing a recently published technique based on soccer concepts, called Golden Ball (GB), with different solution representation from the original one, this technique was designed to solve combinatorial optimization problems, and by embedding a clustering algorithm. Computational results have shown that the approach produces acceptable quality solutions compared to the best previous results in similar problem in terms of generated solutions and processing time. Experimental results prove that the proposed Golden Ball algorithm is efficient and effective to solve the MDVRPTW problem.
Lahcene, Guezouli, and Abdelhamid Samir. 2018. “Multi-objective optimization using genetic algorithm based clustering for multi- depot heterogeneous fleet vehicle routing problem with time windows, ISSN / e-ISSN 1757-585 / 1757-5869”. International Journal of Mathematics in Operational Research Vol 13 (Issue 3) : 30-48. Publisher's Version Abstract
Efficient routing and scheduling of vehicles has significant economic implications for both the public and private sectors. For this purpose, we propose in this study a decision support system which aims to optimise the classical capacitated vehicle routing problem by considering the existence of different vehicle types (with distinct capacities and costs) and multiple available depots, that we call the multi-depot heterogeneous vehicle routing problem with time window (MDHVRPTW) by respecting a set of criteria including: schedules requests from clients, the heterogeneous capacity of vehicles..., and we solve this problem by proposing a new scheme based on the application of the bio-inspired genetic algorithm heuristics and by embedding a clustering algorithm within a VRPTW optimisation frame work, that we will specify later. Computational experiments with the benchmark test instances confirm that our approach produces acceptable quality solutions compared with the best previous results in similar problems in terms of generated solutions and processing time. Experimental results prove that our proposed genetic algorithm is effective in solving the MDHVRPTW problem and hence has a great potential.
In this paper, we consider the integration of production, inventory and distribution decisions in a supply chain composed of one production facility supplying several retailers located in the same region. The supplier is far from the retailers compared to the distance between retailers. Thus, the traveling cost of each vehicle from the supplier to the region is assumed to be fixed and there is a fixed delivery (service) cost for each visited retailer. The objective is to minimize the sum of the costs at the production facility and at the retailers. The problem is more general than the One-Warehouse Multi-Retailer problem and is a special case of the Production Routing Problem. Five heuristics based on a Genetic Algorithm are proposed to solve the problem. In particular, three of them include the resolution of a Mixed Integer Program as subproblem to generate new individuals in the population. The results show that the heuristics can find optimal solutions for small and medium size instances. On large instances, the gaps obtained by the heuristics in less than 300 s are better than the ones obtained by a standard solver in two hours.
Imene, Djelloul, Sari Zaki, and Latreche Khaled. 2018. “Uncertain fault diagnosis problem using neuro-fuzzy approach and probabilistic model for manufacturing systems, ISSN / e-ISSN 0924-669X / 1573-7497”. Applied Intelligence volume Volume 48 (Issue 5) : 3143–3160. Publisher's Version Abstract
This paper is concerned with fault detection and diagnosis problem in manufacturing systems. In such industrial environment, production systems are subject to several faults caused by a number of factors including the environment, the accumulated wearing, usage, etc. However, due to the lack of accuracy or fluctuation of data, it is oftentimes impossible to evaluate precisely the correct classification rate of faults. In order to classify each type of fault, neural networks and fuzzy logic are two different intelligent diagnosis methods that are more applied now, and each has its own advantages and disadvantages. A new hybrid fault diagnosis approach is introduced in this paper that considers the combined learning algorithm and knowledge base (Fuzzy rules) to handle ambiguous and even erroneous information. Therefore, to enhance the classification accuracy, three perceptron models including: linear perceptron (LP), multilayer perceptron (MLP) and fuzzy perceptron (FP) have been respectively established and compared. The conditional risk function “PDF” that measures the expectation of loss when taking an action is presented at the same time. We evaluate the proposed hybrid approach “Variable Learning Rate Gradient Descent with Bayes’ Maximum Likelihood formula” VLRGD-BML on dataset of milk pasteurization process and compare our approach with other similar published works for fault diagnosis in the literature. Comparative results indicate the higher efficiency and effectiveness of the proposed approach with fuzzy perceptron for uncertain fault diagnosis problem.
Lahcene, Guezouli, Bensakhria Mohamed, and Abdelhamid Samir. 2018. “Efficient Golden-Ball Algorithm Based Clustering to solve the Multi-Depot VRP With Time Windows, ISSN / e-ISSN 1942-3594 / 1942-3608”. International Journal of Applied Evolutionary Computation 9 (1) : 1-16. Publisher's Version Abstract
In this article, the authors propose a decision support system which aims to optimize the classical Capacitated Vehicle Routing Problem by considering the existence of multiple available depots and a time window which must not be violated, that they call the Multi-Depot Vehicle Routing Problem with Time Window (MDVRPTW), and with respecting a set of criteria including: schedules requests from clients, the capacity of vehicles. The authors solve this problem by proposing a recently published technique based on soccer concepts, called Golden Ball (GB), with different solution representation from the original one, this technique was designed to solve combinatorial optimization problems, and by embedding a clustering algorithm. Computational results have shown that the approach produces acceptable quality solutions compared to the best previous results in similar problem in terms of generated solutions and processing time. Experimental results prove that the proposed Golden Ball algorithm is efficient and effective to solve the MDVRPTW problem.

Pages