De nos jours, la plupart des moteurs d’analyse de solutions anti-malware sont heuristiques. Ils classent les objets, les flux de données ainsi que les zones mémoires comme bénins ou malveillants en fonction de leur comportement. La plupart des fabricants d'antivirus reconnaissent que l'approche heuristique permet d'atteindre jusqu'à 90% d'efficacité en termes de taux de détection, mais consomme davantage de ressources systèmes : de tels moteurs anti-malware, disponibles en open-source, sont extrêmement inefficaces en termes d’utilisation de ressources système car ils font souvent appel à des algorithmes d'apprentissage automatique. Pour réduire cette charge système, il est fortement recommandé d'utiliser la détection par signature statique, qui permet de filtrer à elle seule la majorité des échantillons de programmes malveillants connus, en conjonction avec les technologies de détection heuristiques et celles basées sur le cloud. Dans ce travail, nous présentons un scanner de signatures rapide pour la détection de programmes malveillants, basé sur une version améliorée de l’algorithme Aho-Corasick pour la recherche de chaînes de caractères (ou motifs), conçue pour pouvoir bénéficier des techniques de vectorisation qui ajoutent une forme de parallélisme de données au code de l’algorithme. La solution proposée est implémentée en utilisant le jeu d’instructions d’Intel® Advanced Vector Extensions (AVX2).
L’objectif de ce travail de thèse et de développer des nouvelles approches permettant aux petites et moyennes entreprises d’améliorer les performances de leur processus de fabrication. Nous avons développé trois approches aspirées du Lean Six Sigma (LSS) pour l’amélioration de la production dans un contexte conventionnel et classique d'une part et d'autre part dans un contexte de production durable. Dans la première approche nous avons proposé une approche Lean Six Sigma conventionnelle pour évaluer et suivre la compétitivité d’une PME en fonction des résultats obtenus par la méthode VSM. Dans la deuxième approche, nous avons proposé une nouvelle extension de l’approche LSS vers le contexte de la production durable en incorporant des algorithmes multicritères quantitatives. Cette approche nous a permis de surmonter quelques barrières au niveau du processus de l’application du LSS. Dans La troisième approche nous avons présenté une amélioration de l’approche LSS qui vise à montrer l’effet positif des algorithmes multicritères qualitatives flous pour surmonter certaines barrières du Lean Six Sigma liées aux phases d’analyse et d’amélioration de l’état actuel des processus de fabrication. Les approches proposées sont appliquées dans deux entreprise algériennes pour améliorer et contrôler la durabilité de leurs processus de fabrication.