The continuing evolution of technology and human behavior puts the company in an uncertain and evolving environment. The company must be responsive and even proactive; therefore, control performance becomes increasingly difficult. Choosing the best method of ensuring control by the management policy of the company and its strategy is also a decision problem. The aim of this paper is the comparative study of three methods: the Balanced Scorecard, GIMSI and SKANDIAs NAVIGATOR for choosing the best method for ensuring the orderly following the policy of the company while maintaining its durability. Our work is divided into three parts. We firstly proposed original structural and kinetic metamodels for the three methods that allow an overall view of a method. Secondly, based on the three metamodels, we have drawn a generic comparison to analyze completeness of the method. Thirdly, we performed a restrictive comparison based on a restrictive set of criteria related to the same aspect example organizational learning, which is one of the bricks of knowledge management for a reconciliation to a proactive organization in an environment disturbed and uncertain, and the urgent needs. We note that we applied the three methods are applied in our precedent works. [1][23]
In this work we propose an immune approach for learning neurofuzzy systems, namely NEFDIAG (NEuro Fuzzy DIAGnosis). NEFDIAG is a software devoted primarily to creation, training and test of a classification Neuro-Fuzzy system of industrial process failures. But in case of great number of input variables NEFDIAG structure grows essentially and the dimensionality of learning task becomes a problem. Existing methods of NEFDIAG learning allow only identifying parameters of NEFDIAG without modifying its structure. We propose an immune Artificial learning approach for NEFDIAG learning based on clonal selection and immune network theories. It allows not only to identify NEFDIAG parameters but also to reduce number of neurons in hidden layers (rules layer) of NEFDIAG.