In this paper, we proposed a new mathematical model of a faulty photovoltaic generator operation. It presents its behavior, when it's subjected to the open-circuit and the short-circuit faults at its basic components as: cells, bypass diodes and blocking diodes. Such kind of modeling will allow developing fault detection and diagnosis methods. Indeed, the proposed model will be used to set normal and fault operation conditions database, which will facilitate learning and classifications phases.
n this paper, we presented a new methodology for the mathematical modeling of the photovoltaic generator’s characteristics based on known electrical laws. This proposed new methodology in this work consists of a three new algorithms, each one presents the characteristic of the cell, group of cells, module, string and generator, when one or more of its components : cells, bypass diodes and blocking diodes subjected to these types of defaults: reversed polarity, open circuit, short circuit or impedance. The three new algorithms obtained can facilitate the prediction for the prognosis or the detection for the diagnosis of these photovoltaic generator’s defaults.
This paper deals with a new algorithm allowing short-circuit and impedance faults smart diagnosis of PV generators. It is based on the use of the SVM technique for the classification of observations not located in its margin, otherwise the proposed algorithm is used a k-NN method. A PV generator database containing observations distributed over classes is used for testing the new algorithm performance, which shows therefore its contribution and its effectiveness in the diagnosis area.