This paper presents a state-of-the-art of recent research work analyzing the requirements of Industry 4.0, particularly related to the competences issue. Over the last few years, the fourth industrial revolution has attracted researchers worldwide to find suitable solutions. However, there are still many gaps related to the Industry 4.0, particularly related to the humans competences issue. Among the many challenges facing companies in this paradigm, one of the most important is the qualification of employees with the necessary skills to succeed in a transformed work environment. To cope with knowledge and competence challenges related to new technologies and processes of Industry 4.0, new strategic approaches for holistic human resource management are needed in manufacturing companies. The main objective of the presented research is to investigate the importance of employee competences, key to the development of Industry 4.0
It is always difficult to identify the most recent works that have been published, especially those published in recent years, due to delays in putting publications online, citations indexe, etc. Scientometry offers to researchers various concepts, models and techniques that can be applied to knowledge management (KM) in order to explore its foundations, its state, its intellectual core, and its potential future development. To this end, we have developed a scientometric KM framework to calculate the scientometric indexes related to a query introduced in the Scopus database, to facilitate research and monitoring of productivity and collaboration between the authors of KM in particular and also the dissemination of knowledge. The works between 2014 and 2019 are taken, the industry of services was omitted. It might help the decision makers and researchers to optimize their time and efforts. We used Unified Modeling Language (UML) to translate the development ideas of the scientometric framework structure into diagrams, and Delphi 7 to calculate the indexes and ensure other operations of research (about: articles, their authors, conferences, etc). This framework is only valid for Excel files extracted from Scopus or similar format. Finally, the relation between KM and industry 4.0 was established on found articles in Scopus.
The era of Industry 4.0 has already begun, however, several improvements should be achieved concerning this revolution. Data mining is one of the modest and efficient tools. Based on a specific query entered in Scopus, related to Industry 4.0, data mining (DM) and logistics, selected documents were studied and analyzed. A brief background of Industry 4.0 and DM are presented. A generic analysis showed that the attentiveness for the cited subject area by countries, universities, authors and especially companies and manufacturers increased through the years. Content analysis reveals that the improvement in quality of the technologies used in manufacturing was noticed, concluding that DM would give Industry 4.0 a leap forward, yet research is dealing with several challenges.
This paper investigates the use of the Particle Swarm Optimization (PSO) algorithm to quantify the effect of RUL uncertainty on predictive maintenance planning. The prediction of RUL is influenced by many sources of uncertainty, and it is required to quantify their combined impact by incorporating the RUL uncertainty in the optimization process to minimize the total maintenance cost. In this work, predictive maintenance of a multi-functional single machine problem is adopted to study the impact of RUL uncertainty on maintenance planning. Therefore, the PSO algorithm is integrated with a random sampling-based strategy to select a sequence that performs better for different values of RUL associated with different jobs. Through a numerical example, results show the importance of optimizing maintenance actions under the consideration of RUL randomness.