EQUIPE 3

Belkaid, Fayçal, Abdelkader Hadri, and Mohammed BENNEKROUF. 2020. “Efficient Approach for Parallel Machine Scheduling Problem”. In International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA 2018), Tangier, Morocco. Publisher's Version Abstract

In this paper, we consider a parallel machine scheduling problem with non-renewable resources. Each job consumes several components and must be processed in one stage composed of identical parallel machines. Resources availability operations, jobs assignment and sequencing are considered and optimized simultaneously. In order to find an optimal solution, an exact method is applied to optimize the total completion time. Due to the problem complexity and prohibitive computational time to obtain an exact solution, a metaheuristic approach based genetic algorithm is proposed and several heuristics are adapted to solve it. Moreover, the impact of non-renewable resources procurement methods on production scheduling is analyzed. The system performances are evaluated in terms of measures such as the solution quality and the execution time. The simulation results show that the proposed genetic algorithm gives the same results as the exact method for small instances and performs the best compared to heuristics for medium and large instances.

Zerrouki, Hamza, et al. 2020. “Applications of Bayesian networks in Chemical and Process Industries: A review”. 29th European Safety and Reliability Conference, August 26, 2019. Publisher's Version Abstract
Despite technological advancements, chemical and process industries are still prone to accidents due to their complexity and hazardous installations. These accidents lead to significant losses that represent economic losses and most importantly human losses. Risk management is one of the appropriate tools to guarantee the safe operations of these plants. Risk analysis is an important part of risk management, it consists of different methods such as Fault tree, Bow-tie, and Bayesian network. The latter has been widely applied for risk analysis purposes due to its flexible and dynamic structure. Bayesian networks approaches have shown a significant increase in their application as shown by in the publication in this field. This paper summarizes the result of a literature review performed on Bayesian network approaches adopted to conduct risk assessments, safety and risk analyses. Different application domains are analysed (i.e. accident modelling, maintenance area, fault diagnosis) in chemical and process industries from the year 2006 to 2018. Furthermore, the advantages of different types of Bayesian networks are presented.
Benfriha, Abdennour -Ilyas, et al. 2020. “The impact of products exchange in multi-levels multi-products distribution network”. Second International Conference on Embedded & Distributed Systems (EDiS). Publisher's Version Abstract

In this paper we analyze a problem of inventory management in a multi-levels multi-products distribution network with three echelon, the studied system consists of a central warehouse and three distribution centers identified by their location zones where each center is connected to a wholesaler group that serve the retailers of his region, which in turn feeds the customers of the regions located in the Algerian territory. The aim of this study is to apply a collaboration between the different actors of the same level in a form of an exchange of products, the exchange can occurs only when the actual demand is being received, in order to study the impact of product exchanges in the distribution networks and its influence on the total costs of the logistics chain from the central warehouse to the delivery to the final customer.

  •  
  • 1 of 7
  • »