Catégorie A+

Hanane, Zermane. 2018. “Bi-directional Recurrent End-to-End Neural Network Classifier for Spoken Arab Digit Recognition”. In ICNLSP 2018, International Conference on Natural Language and Speech Processing,. Publisher's Version Abstract
Automatic Speech Recognition can be considered as a transcription of spoken utterances into text which can be used to monitor/command a specific system. In this paper, we propose a general end-to-end approach to sequence learning that uses Long Short-Term Memory (LSTM) to deal with the non-uniform sequence length of the speech utterances. The neural architecture can recognize the Arabic spoken digit spelling of an isolated Arabic word using a classification methodology, with the aim to enable natural human-machine interaction. The proposed system consists to, first, extract the relevant features from the input speech signal using Mel Frequency Cepstral Coefficients (MFCC) and then these features are processed by a deep neural network able to deal with the non uniformity of the sequences length. A recurrent LSTM or GRU architecture is used to encode sequences of MFCC features as a fixed size vector that will feed a multilayer perceptron network to perform the classification. The whole neural network classifier is trained in an end-to-end manner. The proposed system outperforms by a large gap the previous published results on the same database.
Hanane, Zermane. 2018. “Supervision of an Industrial Process of Milk Production using Fuzzy Logi ”. IEOM 2018 Industrial Engineering and Operations Management July 26-27 Paris, France. Publisher's Version Abstract
Because we usually deal with real - world systems with real - world constraints (cost, computer resources, size, weight, power, heat dissipation, etc.), it is understood that the simplest method to accomplish a task is the one that should be used. Experts usually rely on common sense when they solve problems. They also use vague and ambiguous terms. Other experts have no difficulties with understanding and interpreting this statement because they have the background to hearing problems described like this. However, a knowledge engineer would have difficulties providing a computer with the same level of understanding. In a complex industrial process, how can we represent expert knowledge that uses vague and fuzzy terms in a computer to control it? In this work, the application is developed to control the pretreatment and pasteurization station of milk localized in Batna (Algeria) by adopting a control approach based on expert knowledge and fuzzy logic
  •  
  • 1 of 4
  • »