Publications by Author: Abdelouahab Hassam

2017
Srairi F, Saidi L, Hassam A. F. SRAIRI, L. SAIDI, A. HASSAMModeling Control and Optimization of a New Swimming Microrobot Using Flatness-Fuzzy-Based Approach for Medical Applications. Arabian Journal for Science and Engineering. 2017;9 (99) :3249–3258.Abstract

Recently, researches in the interventional microrobots have taken the lion’s share in the field of biomedical devices. The aim of biomedical microrobots is to reach inaccessible areas of the human body and deliver drugs in high position. This work presents a new approach to elaborate a new physics-based model for novel self-propelled swimming microrobots. The robot is composed of an ellipsoidal head and hybrid tail that are propelled by a joint polymer metal composite actuator. Green’s function is used to solve the coupled elastic/fluid problems caused by the vibrating hybrid tail in a fluid. This method allowed producing the velocity of microrobot. For the control of the swimming microrobot in hazardous environment, the flatness-fuzzy-based control strategy is developed to eliminate the effect of nonlinear model and to generate the optimal trajectory of flat outputs. The fuzzy technique is aimed to adjust the law control gains in real time for improving the precision of the proposed microrobot in tracking the desired trajectory in fluid. The multi-objectives genetic algorithm is employed to optimize both the reference trajectory and the design parameters in order to enhance the time response and to minimize the dynamic tracking error of the trajectory. To achieve this, a numerical model based on accurate solutions of Navier–Stokes equations is developed. The results of the simulation show that the proposed design with ellipsoidal head gives better performance in comparison with that achieved by the conventional structure.

2016
Dib A, Hassam A, Srairi K, Saidi L. Numerical Modeling and Heuristic Algorithms for Nanogenerator Behavior Analysis. The Fourth International Conference on Advances in Information Processing and Communication Technology - IPCT2016. 2016 :86 – 90.
Dib A, Hassam A, Srairi K, Saidi L. Numerical Modeling and Heuristic Algorithms for Nanogenerator Behavior Analysis. International Journal of Advancements in Electronics and Electrical Engineering. 2016;5 (2).Abstract

Recently, the desire for a self-powered micro and nanodevices has attracted a great interest of using sustainable energy sources. Further, the ultimate goal of nanogenerator is to harvest energy from the ambient environment in which a self powered device based on these generators is needed. With the development of nanogenerator-based circuits design and optimization, the building of new device simulator is necessary for the study and the synthesis of electromecanical parameters of this type of models. In the present article, both numerical modeling and optimization of piezoelectric nanogenerator based on zinc oxide have been carried out. They aim to improve the electromecanical performances, robustness, and synthesis process for nanogenerator. The proposed model has been developed for a systematic study of the nanowire morphology parameters in stretching mode. In addition, heuristic optimization technique, namely, particle swarm optimization has been implemented for an analytic modeling and an optimization of nanogenerator-based process in stretching mode. Moreover, the obtained results have been tested and compared with conventional model where a good agreement has been obtained for excitation mode. The developed nanogenerator model can be generalized, extended and integrated into simulators devices to study nanogenerator-based circuits.