Dynamic hysteresis modeling including skin effect using diffusion equation model

Citation:

S. Hamada, F. Z. Louai, N. Nait-Said, and A. Benabou, “Dynamic hysteresis modeling including skin effect using diffusion equation model,” Journal of Magnetism and Magnetic Materials, vol. 410, pp. 137-143, 2016.

Abstract:

An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

Date: 2016/7/15
Éditeur: North-Holland