Stress and fatigue analyses under wind loading of the dual axis sun tracking system via finite element analysis

Abstract:

Sun tracking systems (STS) are one of the main components of large-scale photovoltaic (PV)-projects (PV farms) worldwide. PV farms comprise thousands of STS that are subjected to a number of high variable loads, e.g. the loading due to wind. It is also subjected to mechanical and aerodynamic cyclic stresses that can induce fatigue, thus shortening its lifetime. The main objective of this paper is to perform structural stress and fatigue analyses on the dual axis sun tracking system (azimuth-elevation) under selfweight and critical wind loading of 36 m/s (130km/h). Plain carbon steel is considered as the material structure. The static stress, damage distributions and fatigue life are obtained by means of Finite Element Analysis (FEA). FEA is carried out using the linear static approach. Fatigue analysis is performed using the Stress-Life method. Simulation results show that the stress resistance of the most fragile material is checked with a safety factor higher than 2 and the structure of the STS can withstand a maximum of 11.905 blocks (repeats) after the specified variable amplitude loading event before fatigue will become an issue. These evaluation results indicate that the sun tracking systems satisfy the design requirements of static strength and are safely within its designed fatigue life.

Publisher's Version

Last updated on 03/24/2022