Publications by Author: Amadji, Moussa

2019
Ameddah, Hacene, et al. 2019. “Etude Numérique du Comportement des Endoprothèses Cardiovasculaires (Cas de Stent Biodégradable)”. The First International Conference on Innovation in Biomechanics and Biomaterials (ICIBAB 2019), April 10-11.
Amadji, Moussa, Hacene Ameddah, and Hammoudi Mazouz. 2019. “Numerical Study of the Behavior of Biomimetic Prosthesis “Case of the M6-C Prosthesis with Viscoelastic Core””. The First International Conference on Innovation in Biomechanics and Biomaterials (ICIBAB 2019), April 10-11,.
Amadji, Moussa, Hacene Ameddah, and Hammoudi Mazouz. 2019. “NUMERICAL STUDY OF THE BIOMIMETIC M6-C PROSTHESIS WITH VISCOELASTIC CORE”. U.P.B. Sci. Bull., Series D 81 (4). Publisher's Version Abstract
In this work we present a new biomimetic disc prosthesis imitating the fibroreinforced osmotic, and viscoelastic properties of the biological intervertebral disc (BID). For this, we proposed to study the second-generation biomimetic prosthesis "the M6-C prosthesis" which contains two metal plates, a core and a fiber fabric. First, a 3D model was established, the finite element analysis (FEA) under the ANSYS©2015 was conducted. Secondly, a biomimetic material, the silicone rubber, was compared with the polyethylene to find the material that mimics the behavior of a biological disk. Finally, the analysis of the results found the polymer has the same mechanical properties as the nucleus pulposus, in particular the viscoelastic behaviour compared with that of polyethylene
2018
Amadji, Moussa, Hacene Ameddah, and Hammoudi Mazouz. 2018. “Numerical Shape Optimization of Cervical Spine Disc Prosthesis Prodisc-C”. Journal of Biomimetics, Biomaterials and Biomedical Engineering 36 : 56-69. Publisher's Version Abstract
Various ball and socket-type designs of cervical artificial discs are in use or under investigation. All these disc designs claim to restore the normal kinematics of the cervical spine. In this study, we are interested in the cervical prosthesis, which concerns the most sensitive part of the human body, given the movements generated by the head. The goal of this work is to minimize the constraints by numerical shape optimization in the prodisc-C cervical spine prosthesis in order to improve performance and bio-functionality as well as patient relief. Prodisc-C cervical spine prosthesis consists of two cobalt chromium alloy plates and a fixed nucleus. Ultra-high molecular weight polyethylene, on each plate there is a keel to stabilize the prosthesis; this prosthesis allows thee degrees of freedom in rotation. To achieve this goal, a static study was carried out to determine the constraint concentrations on the different components of the prosthesis. Based on the biomechanical behaviour of the spine discs, we totally fixed the lower metal plate; a vertical load of 73.6 N to simulate the weight of the head was applied to the superior metallic endplate. After a static study on this prosthesis, using a finite element model, we noticed that the concentration of the Von-Mises stress is concentrated on the peripheral edge core and the concave articulating surface of the superior metallic endplate the numerical. We use the module optimization for 3D SolidWorks for optimize our design, based on the criteria of minimizing stress value. Shape optimization concluded to minimize the equivalent stress value on both joint surface (concave and convex) from 11.3 MPa to 9.1MPa corresponding to a percentage decrease of 19.4% from the original geometry. We conclude that despite the fact that maximum Von Mises stresses are higher in the case of the dynamic load, remains that they are weak. Which is an advantage for the durability of the prosthesis and-also for the bone, because a low stress concentration on the prosthesis will reduce stress concentration generated by the implant on the bone, therefore its risk of fracture reduces.