Publications by Author: Ameddah, Hacene

2019
Bouakkar, Loubna, Hacene Ameddah, and Hammoudi Mazouz. 2019. “Analysis of the shock absorber thickness on the rehabilitation of the fracture of liner on alumina in acetabular cup (Titanium - Alumina) in the total hip prosthesis”. The First International Conference on Innovation in Biomechanics and Biomaterials (ICIBAB 2019) , April 10-11.
Mebrek, Hamama, Hacene Ameddah, and Salah Mansouri. 2019. “The effect of the cutting conditions parameters on temperature by the Taguchi optimization method”. The 7th International Conference on Advances in Mechanical Engineering and Mechanics ICAMEM 2019 Hammamet - December 16-18,.
Mebrek, Hamama, Hacene Ameddah, and Salah Mansouri. 2019. “The effect of the cutting conditions parameters on the temperature by the Taguchi optimization method”. The 7eme International Conference on Advances in Mechanical Engineering and Mechanics ICAMEM 2019, December 16-18.
Ameddah, Hacene, Farida Bettine, and Hammoudi Mazouz. 2019. “Electromechanical Analysis (MEMS) of a Capacitive Pressure Sensor of a Neuromate Robot Probe”. The First International Conference on Innovation in Biomechanics and Biomaterials (ICIBAB 2019), April 10-11,.
Ameddah, Hacene, et al. 2019. “Etude Numérique du Comportement des Endoprothèses Cardiovasculaires (Cas de Stent Biodégradable)”. The First International Conference on Innovation in Biomechanics and Biomaterials (ICIBAB 2019), April 10-11.
Ameddah, Hacene, Salim Lounansa, and Hammoudi Mazouz. 2019. “Finite element analysis of fatigue behavior of the biodegradable stent”. The 7th International Conference on Advances in Mechanical Engineering and Mechanics ICAMEM 2019 Hammamet - 16-18,.
Mezach, Fatima, Hacene Ameddah, and Hammoudi Mazouz. 2019. “Minimisation des contraintes dans les prothèses totales de genou”. The First International Conference on Innovation in Biomechanics and Biomaterials (ICIBAB 2019) , April 10-11.
Amadji, Moussa, Hacene Ameddah, and Hammoudi Mazouz. 2019. “Numerical Study of the Behavior of Biomimetic Prosthesis “Case of the M6-C Prosthesis with Viscoelastic Core””. The First International Conference on Innovation in Biomechanics and Biomaterials (ICIBAB 2019), April 10-11,.
Amadji, Moussa, Hacene Ameddah, and Hammoudi Mazouz. 2019. “NUMERICAL STUDY OF THE BIOMIMETIC M6-C PROSTHESIS WITH VISCOELASTIC CORE”. U.P.B. Sci. Bull., Series D 81 (4). Publisher's Version Abstract
In this work we present a new biomimetic disc prosthesis imitating the fibroreinforced osmotic, and viscoelastic properties of the biological intervertebral disc (BID). For this, we proposed to study the second-generation biomimetic prosthesis "the M6-C prosthesis" which contains two metal plates, a core and a fiber fabric. First, a 3D model was established, the finite element analysis (FEA) under the ANSYS©2015 was conducted. Secondly, a biomimetic material, the silicone rubber, was compared with the polyethylene to find the material that mimics the behavior of a biological disk. Finally, the analysis of the results found the polymer has the same mechanical properties as the nucleus pulposus, in particular the viscoelastic behaviour compared with that of polyethylene
Ameddah, Hacene, Ghazali Mebarki, and Hammoudi Mazouz. 2019. “Traitement d’Images Médicales et Détection de Contours d’Images Echographiques pour la Reconstruction 3D”. The First International Conference on Innovation in Biomechanics and Biomaterials (ICIBAB 2019), April 10-11.
2018
Chergui, Karima, Hacene Ameddah, and Hammoudi Mazouz. 2018. “Biomechanical Analysis of Fatigue Behavior of a Fully Composite-based Designed Hip Resurfacing Prosthesis”. Journal of the Serbian Society for Computational Mechanics 12 (2) : 80-94. Publisher's Version Abstract
The Hip resurfacing prosthesis is subjected to different stresses resulting from the different positions of the human walk, thereby generating dynamic stresses that vary with time, leading the implant material to fatigue failure. It is important to study the fatigue behavior of the prosthesis material and to ensure its long lifetime. We proposed a new composite material named CF/PA12 composed of carbon fibers with a polyamide 12 resin, whose biocompatibility had been demonstrated in laboratories. In this study, we investigated the static and dynamic behavior at different Gait cycle positions of a Hip resurfacing prosthesis entirely made of new CF/PA12 composite. A fatigue behavior will be deducted by a Finite Element Analysis using the commercial SolidWorks software compatible with the Abaqus finite element code. Static and dynamic analysis were conducted considering normal walking and climbing stairs loading at different Gait cycle percentages of 2, 13, 19, 50 and 63%. The results obtained showed that Hip resurfacing prosthesis fully made of new CF/PA12 composite was very far from fatigue and therefore from failure.
Ameddah, Hacene, and Hammoudi Mazouz. 2018. “BIOMEDICAL RAPID PROTOTYPING OF FREE-FORM SURFACES BY PLANAR CONTOURS METHOD”. 6th International Conference Integrity-Reliability-Failure , 22-26 July. Publisher's Version Abstract
In this paper, an interactive application tool has been developed for creating 3D models of dental implants and other body structures from 2D medical imaging data. 3D models are generated by using reverse engineering algorithm and planar contour method by SolidWorks developed in Visual Basic Language. The research includes transferring Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images into digital matrixes, entering digital matrixes into SolidWorks environment, building feature library for 3D reconstruction, creating medical rapid prototyping models, and performing biomedical rapid design and manufacturing. 3D reconstruction models is created by edge configuration, generation and triangulated cube configuration generation in capturing section contour points from medical image per slice, creating B-spline curve with the control points in each layer, producing solid model construction in planar contours method. Medical rapid prototyping models are performed in SolidWorks, including three views or any combination of views, for biomedical rapid designing and manufacturing according to the biomedical needs. Layered manufacturing techniques are used for producing parts of arbitrary complexity. The results of this paper are to develop image processing 3D visualization in SolidWorks Application Programming Interface (API) using Visual Basic Language. The system performance is tested using truth CT and or MRI data, and 3D physical models dental for MRP are created directly from SolidWorks. The results reveal that the accuracy of 3D reconstruction is acceptable.
Ameddah, Hacene, and Hammoudi Mazouz. 2018. “Biomedical rapid prototyping of free_form surfaces By planar contours method”. 6th International Conference on INTEGRITY-RELIABILITY-FAILURE, 22-26 July.
Klaa, Eftikhar, Hacene Ameddah, and Salah Mansouri. 2018. “Etude numérique de l’usinage en traisage d’alliage de titane Ti-6Al-4V”. 2ème WORKSHOP INTERNATIONAL en MECANIQUE des STRUCTURE et MATERIAUX IWMSM 2018, du 17-18 Décembre.
Ameddah, Hacene, and Hammoudi Mazouz. 2018. “IN VIVO CHARACTERIZATION OF MICRO ARCHITECTURE OF A HUMAN VERTEBRA BY MICRO-IMAGING”. 6th International Conference Integrity-Reliability-Failure 22-26 July. Publisher's Version Abstract
Bone, like any other material, is subject to mechanical fatigue when subjected to repetitive cyclic loading. Cyclic loading in vivo occurs either in workplaces exposed to mechanical vibration or during handling operations or during leisure and sports activities. As an example, the continuous exposure of the human body to intense global vibration can be, in the long run, cause problems of lumbar lesions due to dynamic stresses (mainly compression) in the spine. Bone and microcracks in cancellous bone. Fatigue rupture of vertebral bone is clinically and biologically important. From a clinical point of view, permanent damage and deformity, under cyclic loading, can probably weaken the vertebral body by inducing the migration of joint replacements. The mechanism of fatigue damage in cortical and trabecular bone can cause cracks and their propagation to final rupture. Microcracks observed in the vertebrae contributed to the decrease in vertebral rupture strength. In order to analyze the biomechanical behavior of the vertebrae and to assess the risk of fracture, an in vivo characterization method is applied based on the micro-MRI, aiming to focus on the evaluation the force at rupture of the vertebral body in compression. The method of extracting the shape of cancellous bone by special filters (adaptive filter, Robert’s filter, etc.) will be applied, allowing it to be modelled as a slice (2D). This micro slice are created by edge configuration generation and triangulated cube configuration generation in capturing section contour points from medical image per slice, creating B-spline curve with the control points in each layer, producing solid model construction in Planar Contours method. Medical rapid prototyping models are performed in SolidWorks. Layered manufacturing techniques are used for producing parts of arbitrary complexity, which will then be modelled by finite element in fatigue.
The prediction of machining accuracy of a Five-axis Machine tool is a vital process in precision manufacturing. This work presents a novel approach for predicting kinematic errors solutions in five axis Machine. This approach is based on Artificial Neural Network (ANN) for trochoidal milling machining strategy. We proposed a multi-layer perceptron (MLP) model to find the inverse kinematics solution for a Five-axis Machine Matsuura MX-330. The data sets for the neural-network model is obtained using Matsuura MX-330 kinematics software. The solution of each neural network is estimated using inverse kinematics equation of the Machine tool to select the best one. As a result, the Neural Network implementation improves the performance of the learning process. In this work trochoidal trajectory generation formulation has been developed and simulated using the software Matlab Inc. The main advantage of the trochoidal path is to present a continuous path radius leading the machining process to take place under favorable conditions (no impact, less marking of the part, ...). Obtaining the toolpath is to allow programming of the toolpath according to ISO 6983 (which defines the principles of the G code). For this, numerical study of trochoidal strategy and experimental result are presented with aims to full milling and to ensure a control of radial engagement.
Bettine, Farida, Hacene Ameddah, and Rabah Manaa. 2018. “A NEURAL NETWORK APPROACH FOR PREDICTING KINEMATIC ERRORS SOLUTIONS FOR TROCHOIDAL MACHINING”. International Journal of Modern Manufacturing Technologies x (1). Publisher's Version Abstract
The prediction of machining accuracy of a fiveaxis machine tool is a vital process in precision manufacturing for machining a hard and free form surfaces. This work presents a novel approach for predicting kinematic errors solutions in five-axis machine for trochoidal milling strategy. This approach is based on Artificial Neural Network (ANN) for trochoidal milling machining strategy. We proposed a multi-layer perceptron (MLP) model to find the inverse kinematics solution for a five-axis machine. The data sets for the neural-network model are obtained using kinematics software. The solution of each neural network is estimated using inverse kinematics equation of the machine tool to select the best one. As a result, the Neural Network implementation improves the performance of the learning process. For this, numerical study of trochoidal strategy and experimental results are presented with aims to full milling and to ensure a control of radial engagement. The experimental result shows the efficiency of the method by obtainning the toolpath and the machining possebility of this new type of strategy emerging.
Amadji, Moussa, Hacene Ameddah, and Hammoudi Mazouz. 2018. “Numerical Shape Optimization of Cervical Spine Disc Prosthesis Prodisc-C”. Journal of Biomimetics, Biomaterials and Biomedical Engineering 36 : 56-69. Publisher's Version Abstract
Various ball and socket-type designs of cervical artificial discs are in use or under investigation. All these disc designs claim to restore the normal kinematics of the cervical spine. In this study, we are interested in the cervical prosthesis, which concerns the most sensitive part of the human body, given the movements generated by the head. The goal of this work is to minimize the constraints by numerical shape optimization in the prodisc-C cervical spine prosthesis in order to improve performance and bio-functionality as well as patient relief. Prodisc-C cervical spine prosthesis consists of two cobalt chromium alloy plates and a fixed nucleus. Ultra-high molecular weight polyethylene, on each plate there is a keel to stabilize the prosthesis; this prosthesis allows thee degrees of freedom in rotation. To achieve this goal, a static study was carried out to determine the constraint concentrations on the different components of the prosthesis. Based on the biomechanical behaviour of the spine discs, we totally fixed the lower metal plate; a vertical load of 73.6 N to simulate the weight of the head was applied to the superior metallic endplate. After a static study on this prosthesis, using a finite element model, we noticed that the concentration of the Von-Mises stress is concentrated on the peripheral edge core and the concave articulating surface of the superior metallic endplate the numerical. We use the module optimization for 3D SolidWorks for optimize our design, based on the criteria of minimizing stress value. Shape optimization concluded to minimize the equivalent stress value on both joint surface (concave and convex) from 11.3 MPa to 9.1MPa corresponding to a percentage decrease of 19.4% from the original geometry. We conclude that despite the fact that maximum Von Mises stresses are higher in the case of the dynamic load, remains that they are weak. Which is an advantage for the durability of the prosthesis and-also for the bone, because a low stress concentration on the prosthesis will reduce stress concentration generated by the implant on the bone, therefore its risk of fracture reduces.
2017
Faiza, Khalid, et al. 2017. “Simulation du comportement thermomécanique d’une poutre sandwiche en matériaux composites”. 3ème Conférence Internationale de Mécanique ICM’2017 , 26-27/04/.
2016
Ameddah, Hacene. 2016. “Impeller Tool Paths Programming for Rough Machining in an Intelligent NURBS Step- Nc Format”. International Journal of Current Engineering and Technology 6 (1). Publisher's Version Abstract

The research work reported in this paper focuses on introduces a fully STEP-compliant CNC by putting forward an interpolation algorithm for Non Uniform Rational Basic spline (NURBS) curve system for rough milling tool paths with an aim to solve the problems faced by the current CNC systems. The most important components used in aerospace, ships, and automobiles are designed with free form surfaces. An impeller is one of the most important components that are difficult to machine because of its twisted blades. The research is based on the premise that a STEP-NC program can document Dzgenericdz manufacturing information for an impeller. This way, a STEP-NC program can be made machine-independent and has an advantage over the conventional G-code based NC program that is always generated for a specific CNC machine. Rough machining is recognized as the most crucial procedure influencing machining efficiency and is critical for the finishing process. A key feature of the system is the use of STEPNC data model (ISO 14649-10: 2003; ISO 10303-238, 238: 2003), which enables more design information (e.g. geometry, workpiece information and tolerances) to be incorporated both prior to and during machining processes. The relevant algorithm for the curve was simulated in CAM software. The results have shown that the algorithm for rough milling is feasible and effective.

Pages