Publications

Publications Internationales / Equipe RiCoP

Boubechal I, Rachid S, Benzid R. A Generalized and Parallelized SSIM-Based Multilevel Thresholding Algorithm. Applied Artificial Intelligence. 2019;33 (14) :1266-1289.Abstract

Multilevel thresholding is a widely used technique to perform image segmentation. It consists of dividing an input image into several distinct regions by finding the optimal thresholds according to a certain objective function. In this work, we generalize the use of the SSIM quality measure as an objective function to solve the multilevel thresholding problem using empirically tuned swarm intelligence algorithms. The experimental study we have conducted shows that our approach, producing near-exact solutions, is more effective compared to the state-of-the-art methods. Moreover, we show that the computation complexity has been significantly reduced by adopting a shared-memory parallel programming paradigm for all the algorithms we have implemented.

Saliha M, Ali B, Rachid S. Towards large-scale face-based race classification on spark framework. Multimedia Tools and Applications . 2019;78 (18) :26729–26746.Abstract

Recently, the identification of an individual race has become an important research topic in face recognition systems, especially in large-scale face images. In this paper, we propose a new large-scale race classification method which combines Local Binary Pattern (LBP) and Logistic Regression (LR) on Spark framework. LBP is used to extract features from facial images, while spark’s logistic regression is used as a classifier to improve the accuracy and speedup the classification system. The race recognition method is performed on Spark framework to process, in a parallel way, a large scale of data. The evaluation of our proposed method has been performed on two large face image datasets CAS-PEAL and Color FERET. Two major races were considered for this work, including Asian and Non-Asian races. As a result, we achieve the highest race classification accuracy (99.99%) compared to Linear SVM, Naive Bayesian (NB), Random Forest(RF), and Decision Tree (DT) Spark’s classifiers. Our method is compared against different state-of-the-art methods on race classification, the obtained results show that our approach is more efficient in terms of accuracy and processing time.

Guezouli L, Belhani H. Motion Detection of Some Geometric Shapes in Video Surveillance. American Journal of Data Mining and Knowledge Discovery. 2017;2 (1) : 8-14 .Abstract

Motion detection is a live issue. Moving objects are an important clue for smart video surveillance systems. In this work we try to detect the motion in video surveillance systems. The aim of our work is to propose solutions for the automatic detection of moving objects in real time with a surveillance camera. We are interested by objects that have some geometric shape (circle, ellipse, square, and rectangle). Proposed approaches are based on background subtraction and edge detection. Proposed algorithms mainly consist of three steps: edge detection, extracting objects with some geometric shapes and motion detection of extracted objects.

Saadna Y. An overview of traffic sign detection and classification methods. International Journal of Multimedia Information Retrieval. 2017;6 (3) :193–210.Abstract

Over the last few years, different traffic sign recognition systems were proposed. The present paper introduces an overview of some recent and efficient methods in the traffic sign detection and classification. Indeed, the main goal of detection methods is localizing regions of interest containing traffic sign, and we divide detection methods into three main categories: color-based (classified according to the color space), shape-based, and learning-based methods (including deep learning). In addition, we also divide classification methods into two categories: learning methods based on hand-crafted features (HOG, LBP, SIFT, SURF, BRISK) and deep learning methods. For easy reference, the different detection and classification methods are summarized in tables along with the different datasets. Furthermore, future research directions and recommendations are given in order to boost TSR’s performance.

Baroudi T, Seghir R, Loechner V. Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts. ACM Transactions on Architecture and Code Optimization (TACO). 2017;14 (4).Abstract

Over the past few years, multicore systems have become increasingly powerful and thereby very useful in high-performance computing. However, many applications, such as some linear algebra algorithms, still cannot take full advantage of these systems. This is mainly due to the shortage of optimization techniques dealing with irregular control structures. In particular, the well-known polyhedral model fails to optimize loop nests whose bounds and/or array references are not affine functions. This is more likely to occur when handling sparse matrices in their packed formats. In this article, we propose using 2d-packed layouts and simple affine transformations to enable optimization of triangular and banded matrix operations. The benefit of our proposal is shown through an experimental study over a set of linear algebra benchmarks.

Guezouli L, Azzouz I. ENHANCEMENT OF THE FUSION OF INCOMPATIBLE LISTS OF RESULTS. International Journal of Digital Information and Wireless Communications (IJDIWC) . 2016;6 (2) :78-86.Abstract

This work is located in the domain of distributed information retrieval (DIR). A simplified view of the DIR requires a multi-search in a set of collections, which forces the system to analyze results found in these collections, and merge results back before sending them to the user in a single list. Our work is to find a fusion method based on the relevance score of each result received from collections and the relevance of the local search engine of each collection, which is the main issue of our work.