Publications

Ben-Attia H, Kahloul L, Benhazrallah S, Bourekkache S. Using Hierarchical Timed Coloured Petri Nets in the formal study of TRBAC security policies. International Journal of Information Security [Internet]. 2020;19 :163–187 . Publisher's VersionAbstract

Role-Based Access Control (RBAC) is one of the most used models in designing and implementation of security policies, in large networking systems. Basic RBAC model does not consider temporal aspects which are so important in such policies. Temporal RBAC (TRBAC) is proposed to deal with these temporal aspects. Despite the elegance of these models, designing a security policy remains a challenge. Designers must ensure the consistency and the correctness of the policy. The use of formal methods provides techniques for proving that the designed policy is consistent. In this paper, we present a formal modelling/analysis approach of TRBAC policies. This approach uses Hierarchical Timed Coloured Petri Nets (HTCPN) formalism to model the TRBAC policy, and the CPN-tool to analyse the generated models. The timed aspect, in HTCPN, facilitates the consideration of temporal constraints introduced in TRBAC. The hierarchical aspect of HTCPN makes the model “manageable”, in spite of the complexity of TRBAC policy specification. The analysis phase allows the verification of many important properties about the TRBAC security policy.

Hmidi Z, Kahloul L, Benharzallah S. Using priced timed automata for the specification and verification of CSMA/CA in WSNs. International Journal of Information and Communication Technology [Internet]. 2020;17 (2). Publisher's VersionAbstract

Several contention-based MAC protocols for WSNs have been proposed. The control channel is accessed with carrier sense multiple access with collision avoidance (CSMA/CA) method. The complexity of this method and its criticality motivate the formal specification and verification of its basic algorithms. Most existing works do not deal with all possible aspects such as topology, number of nodes, node behaviour, and number of possible retransmissions. In this paper, we propose a stochastic generic model for the 802.11 MAC protocol for an arbitrary network topology which is independent of the number of sensors. In addition to the qualitative evaluation that proves the correctness of the model, we will make a quantitative evaluation using the statistical model checking to measure the probabilistic performance of the protocol.

Zoubeidi M, Kazar O, Benharzallah S, Mesbahi N, Merizig A, Rezki D. A new approach agent-based for distributing association rules by business to improve decision process in ERP systems. International Journal of Information and Decision Sciences [Internet]. 2020;12 (1) :1-35. Publisher's VersionAbstract

Nowadays, the distributed computing plays an important role in the data mining process. To make systems scalable it is important to develop mechanisms that distribute the workload among several sites in a flexible way. Moreover, the acronym ERP refers to the systems and software packages used by organisations to manage day-by-day business activities. ERP systems are designed for the defined schema that usually has a common database. In this paper, we present a collaborative multi-agent based system for association rules mining from distributed databases. In our proposed approach, we combine the multi-agent system with association rules as a data mining technique to build a model that can execute the association rules mining in a parallel and distributed way from the centralised ERP database. The autonomous agents used to provide a generic and scalable platform. This will help business decision-makers to take the right decisions and provide a perfect response time using multi-agent system. The platform has been compared with the classic association rules algorithms and has proved to be more efficient and more scalable.

Tioura A, Moumen H, Kalla H, Ait-Saidi A. A Hybrid Protocol to Solve Authenticated Byzantine Consensus. Fundamenta Informaticae [Internet]. 2020;173 (1) :73-89. Publisher's VersionAbstract

The consensus is a central problem of fault-tolerant distributed computing. Unfortunately, solving such a problem is impossible in asynchronous distributed systems prone to process failures. To circumvent this impossibility (known as FLP impossibility result) in a deterministic way, on top of asynchronous distributed systems enriched with additional assumptions, several protocols have been proposed. Actually, to solve the Byzantine Consensus problem, with a deterministic manner, in systems where at most t processes may exhibit a Byzantine behavior, two approaches have been investigated. The first relies on the addition of synchrony, called Timer-Based, while the second, called Time-Free, is based on the pattern of message exchange. This paper shows that both types of assumptions are not antagonist and can be combined to solve authenticated Byzantine consensus. The combined assumption considers a correct process pi, called ⋄〈t + 1〉-BW, and a set X of t+1 correct processes (including pi itself) such that, eventually, for each query broadcasted by a correct process pj of X, pj receives a response from pi ∈ X among the (n – t) first responses to that query or both links connecting pi and pj are timely. Based on this combination, a simple hybrid authenticated Byzantine consensus protocol benefiting from the best of both worlds is proposed. As a matter of fact, although numerous hybrid protocols have been designed for the consensus problem in the crash model, this is, to our knowledge, the first hybrid deterministic solution to the Byzantine consensus problem.

Benreguia B, Moumen H, Merzoug M-A. Tracking covid-19 by tracking infectious trajectories. IEEE Access [Internet]. 2020;8 :145242 - 145255. Publisher's VersionAbstract

Nowadays, the coronavirus pandemic has and is still causing large numbers of deaths and infected people. Although governments all over the world have taken severe measurements to slow down the virus spreading (e.g., travel restrictions, suspending all sportive, social, and economic activities, quarantines, social distancing, etc.), a lot of persons have died and a lot more are still in danger. Indeed, a recently conducted study [1] has reported that 79% of the confirmed infections in China were caused by undocumented patients who had no symptoms. In the same context, in numerous other countries, since coronavirus takes several days before the emergence of symptoms, it has also been reported that the known number of infections is not representative of the real number of infected people (the actual number is expected to be much higher). That is to say, asymptomatic patients are the main factor behind the large quick spreading of coronavirus and are also the major reason that caused governments to lose control over this critical situation. To contribute to remedying this global pandemic, in this article, we propose an IoT a investigation system that was specifically designed to spot both undocumented patients and infectious places. The goal is to help the authorities to disinfect high-contamination sites and confine persons even if they have no apparent symptoms. The proposed system also allows determining all persons who had close contact with infected or suspected patients. Consequently, rapid isolation of suspicious cases and more efficient control over any pandemic propagation can be achieved.

Noui O, Barkat A, Beloucif A. A Novel Image Encryption Approach Using Polar Decomposition and Orthogonal Matrices. Malaysian Journal of Computing and Applied Mathematics [Internet]. 2020;3 (1) :27-34. Publisher's VersionAbstract

Information security is one of the important issues in the information age, image encryption algorithms have been increasingly studied to guarantee the secure image transmission over the internet and through wireless networks. In this article, we propose a new approach for image encryption based on polar decomposition and orthogonal matrices. This scheme offers good confusion and diffusion qualities. The proposed algorithm is shown to be secure against important cryptanalytic attacks (statistical attacks, sensitivity dependence, differential attacks, brute force attacks...), theoretical analysis and computer simulations both confirm that it has a high security level.

Merzoug A, Adda A-P, Hadj-Said N. New chaotic cryptosystem for the image encryption. International Journal of Information and Computer Security [Internet]. 2020;12 (4) :450-463. Publisher's VersionAbstract

Recent researches of image encryption algorithms have been increasingly based on chaotic systems. This paper, a new image encryption scheme which employs. The idea is to associate the Hénon attractor and the logistics map, for the construction of a new secret key cryptosystem. We generate values through of the logistics map that will be added to the pixels of the plaintext image. This result modulo 256 will be permuted to another position of the encrypted image. The calculation of this permutation is deducted from the Hénon attractor, which is 2-dimensional, in order to have a significantly increasing the resistance to attacks. The proposed system has the advantage of bigger key space (about 180 bits); high security analysis such as key space analysis, statistical analysis and sensitivity analysis were carried out. The results demonstrate that the proposed system is highly efficient and a robust system.

Riad K, Hamza R, Yan H. Sensitive and Energetic IoT Access Control for Managing Cloud Electronic Health Records. IEEE Access . 2019;7 :86384 - 86393.Abstract

Electronic health records (EHRs) replaced the old paper-based systems to make patient data more accurate, reliable, and more accessible. Yet, the EHRs system requires high transmission cost, energy, and waste of time for both doctors and patients. Furthermore, EHRs security presents a serious issue threatening the patient's privacy. Most of the third-party hosting systems have some issues related to the users' privacy and data security. Hence, it is necessary to restrict the access control policies and develop efficient mechanisms for cloud-based EHRs data. In this paper, a sensitive and energetic access control (SE-AC) mechanism is proposed for managing the cloud-hosted EHRs and providing a fine-grained access control even in critical situations. The proposed mechanism ensures the confidentiality of the patient's data, where only authorized individuals to have permission to be able to edit or review certain of the patient's data. Each EHR data is encrypted by the managing authority before submitting to the cloud storage. The requesting user can get dynamically changing permissions based on authentication and context attributes. In addition, seven major aspects have been quantified to assess the operation of any access control that could be deployed in the Internet-of-Thing (IoT). The security analysis indicates that the SE-AC mechanism is secure and will prevent any unauthorized access. The results show exceptional compatibility and performance with different setups and configuration.

Djebaili K, Melkemi L. Two dimensional ElGamal public key cryptosystem. Information Security Journal: A Global Perspective . 2019;28 (4-5) : 120-126.Abstract

In this work, we propose a secure version of ElGamal public key cryptosystem, and prove that it is semantically secure assuming the hardness of what we call the two-dimensional decisional Diffie-Hellman (2DDDH) problem, this cryptosystem is distinguished by the speed of encryption and decryption processes and by its resistance to active adversaries. Since the 2DDDH problem is harder than the decisional Diffie-Hellman (DDH) problem (as it will be seen), one may conclude that our model reinforces the exchange security compared to the existed cryptosystems falling within the same context, also we discuss the difficult problems that guarantee its security.

Djebaili K, Melkemi L. Security and robustness of a modified ElGamal encryption scheme. International Journal of Information and Communication Technology. 2018;13 (3).Abstract

In this paper, we propose a new and practical variant of ElGamal encryption which is secure against every passive and active adversary. Under the hardiness of the decisional Diffie-Hellman assumption, we can prove that the proposed scheme is secure against an adaptive chosen ciphertext attacks in the standard model. Such security verifies not only the confidentiality but also verifies the integrity and the authentication of communications. We display that the modified scheme furthermore achieves anonymity as well as strong robustness.

Belferdi W, Behloul A, Noui L. A Bayer pattern-based fragile watermarking scheme for color image tamper detection and restoration. Multidimensional Systems and Signal Processing [Internet]. 2018;30 :1093–1112. Publisher's VersionAbstract

The security of multimedia documents becomes an urgent need, especially with the increasing image falsifications provided by the easy access and use of image manipulation tools. Hence, usage of image authentication techniques fulfills this need. In this paper, we propose an effective self-embedding fragile watermarking scheme for color images tamper detection and restoration. To decrease the capacity of insertion, a Bayer pattern is used to reduce the color host image into a gray-level watermark, to further improve the security Torus Automorphism permutation is used to scramble the gray-level watermark. In our algorithm, three copies of the watermark are inserted over three components (R, G, and B channels) of the color host image, providing a high probability of detection accuracy and recovery if one copy is destroyed. In the tamper detection process, a majority voting technique is used to determine the legitimacy of the image and recover the tampered regions after interpolating the extracted gray-level watermark. Using our proposed method, tampering rate can achieve 25% with a high visual quality of recovered image and PSNR values greater than 34 (dB). Experimental results demonstrate that the proposed method affords three major properties: the high quality of watermarked image, the sensitive tamper detection and high localization accuracy besides the high-quality of recovered image.

Beloucif A, Noui L. A lossless image encryption algorithm using matrix transformations and XOR operation. International Journal of Information and Communication Technology. 2018;13 (1).Abstract

Encryption is the way to ensure confidentiality of different data, digital images have special features as large data, bulky data, and strong correlation between pixels, which makes traditional encryption algorithms not suitable for image encryption. For this concern, we propose a novel lossless encryption scheme for digital images based on combination of matrix transformations and XOR operation. The numerical experimental results confirms that the proposed method achieves high security level against brute force attacks, statistical attacks and sensitivity analysis, moreover the suggested algorithm provides a good randomness properties, thus our method can be applied for image encryption and transmission in sensitive domains.

Delenda S, Noui L. A new steganography algorithm using polar decomposition. Information Security Journal: A Global Perspective . 2018;27 (3) :133-144.Abstract

Nowadays, the security of communication becomes very important with the rapid development of network technology. So, the transmission and distribution of the several digital information must be protected and secured against other users. Many steganography techniques have been proposed for embedding secret digital data in other digital data. In this article, we propose a new steganography algorithm based on a linear algebraic tool that is the polar decomposition (PD) for hiding secret data in an image. A host image is selected and divided into blocks of size 2 × 2, a PD is applied on each block, and the secret data are embedded in suitable blocks. Experimental results show that our proposed algorithm gives a higher hiding capacity, achieves good imperceptibility, and also provides a high degree of security against common types of attacks such as compression attack with quality 10%, gamma correction attack, and impulse noise attack.

Belferdi W, Behloul A, Noui L. A Bayer pattern-based fragile watermarking scheme for color image tamper detection and restoration. Multidimensional Systems and Signal Processing. 2018;30 :pages1093–1112.Abstract

The security of multimedia documents becomes an urgent need, especially with the increasing image falsifications provided by the easy access and use of image manipulation tools. Hence, usage of image authentication techniques fulfills this need. In this paper, we propose an effective self-embedding fragile watermarking scheme for color images tamper detection and restoration. To decrease the capacity of insertion, a Bayer pattern is used to reduce the color host image into a gray-level watermark, to further improve the security Torus Automorphism permutation is used to scramble the gray-level watermark. In our algorithm, three copies of the watermark are inserted over three components (R, G, and B channels) of the color host image, providing a high probability of detection accuracy and recovery if one copy is destroyed. In the tamper detection process, a majority voting technique is used to determine the legitimacy of the image and recover the tampered regions after interpolating the extracted gray-level watermark. Using our proposed method, tampering rate can achieve 25% with a high visual quality of recovered image and PSNR values greater than 34 (dB). Experimental results demonstrate that the proposed method affords three major properties: the high quality of watermarked image, the sensitive tamper detection and high localization accuracy besides the high-quality of recovered image.

Hamza R, Muhammad K, Lv Z, Titouna F. Secure video summarization framework for personalized wireless capsule endoscopy. Pervasive and Mobile Computing. 2017;41 :436-450.Abstract

Wireless capsule endoscopy (WCE) has several benefits over traditional endoscopy such as its portability and ease of usage, particularly for remote internet of things (IoT)-assisted healthcare services. During the WCE procedure, a significant amount of redundant video data is generated, the transmission of which to healthcare centers and gastroenterologists securely for analysis is challenging as well as wastage of several resources including energy, memory, computation, and bandwidth. In addition to this, it is inherently difficult and time consuming for gastroenterologists to analyze this huge volume of gastrointestinal video data for desired contents. To surmount these issues, we propose a secure video summarization framework for outdoor patients going through WCE procedure. In the proposed system, keyframes are extracted using a light-weighted video summarization scheme, making it more suitable for WCE. Next, a cryptosystem is presented for security of extracted keyframes based on 2D Zaslavsky chaotic map. Experimental results validate the performance of the proposed cryptosystem in terms of robustness and high-level security compared to other recent image encryption schemes during dissemination of important keyframes to healthcare centers and gastroenterologists for personalized WCE.

Pages