Publications dans des revues

Aouag, Hichem, and Mohyiddine Soltani. 2023. “Improvement of Lean Manufacturing approach based on MCDM techniques for sustainable manufacturing”. International Journal of Manufacturing Research 18 (1). Publisher's Version Abstract

Over the past few decades, Lean Manufacturing (LM) has been the pinnacle of strategies applied for cost and waste reduction. However as the search for competitive advantage and production growth continues, there is a growing consciousness towards environmental preservation. With this consideration in mind this research investigates and applies Value Stream Mapping (VSM) techniques to aid in reducing environmental impacts of manufacturing companies. The research is based on empirical observation within the Chassis weld plant of Company X. The observation focuses on the weld operations and utilizes the cross member line of Auxiliary Cross as a point of study. Using various measuring instruments to capture the emissions emitted by the weld and service equipment, data is collected. The data is thereafter visualised via an Environmental Value Stream Map (EVSM) using a 7-step method. It was found that the total lead-time to build an Auxiliary Cross equates to 16.70 minutes and during this process is emitted. It was additionally found that the UPR x LWR stage of the process indicated both the highest cycle time and carbon emissions emitted and provides a starting point for investigation on emission reduction activity. The EVSM aids in the development of a method that allows quick and comprehensive analysis of energy and material flows. The results of this research are important to practitioners and academics as it provides an extension and further capability of Lean Manufacturing tools. Additionally, the EVSM provides a gateway into realising environmental benefits and sustainable manufacturing through Lean Manufacturing.

Condition monitoring (CM) of industrial processes is essential for reducing downtime and increasing productivity through accurate Condition-Based Maintenance (CBM) scheduling. Indeed, advanced intelligent learning systems for Fault Diagnosis (FD) make it possible to effectively isolate and identify the origins of faults. Proven smart industrial infrastructure technology enables FD to be a fully decentralized distributed computing task. To this end, such distribution among different regions/institutions, often subject to so-called data islanding, is limited to privacy, security risks, and industry competition due to the limitation of legal regulations or conflicts of interest. Therefore, Federated Learning (FL) is considered an efficient process of separating data from multiple participants to collaboratively train an intelligent and reliable FD model. As no comprehensive study has been introduced on this subject to date, as far as we know, such a review-based study is urgently needed. Within this scope, our work is devoted to reviewing recent advances in FL applications for process diagnostics, while FD methods, challenges, and future prospects are given special attention.

Machine learning prognosis for condition monitoring of safety-critical systems, such as aircraft engines, continually faces challenges of data unavailability, complexity, and drift. Consequently, this paper overcomes these challenges by introducing adaptive deep transfer learning methodologies, strengthened with robust feature engineering. Initially, data engineering encompassing: (i) principal component analysis (PCA) dimensionality reduction; (ii) feature selection using correlation analysis; (iii) denoising with empirical Bayesian Cauchy prior wavelets; and (iv) feature scaling is used to obtain the required learning representations. Next, an adaptive deep learning model, namely ProgNet, is trained on a source domain with sufficient degradation trajectories generated from PrognosEase, a run-to-fail data generator for health deterioration analysis. Then, ProgNet is transferred to the target domain of obtained degradation features for fine-tuning. The primary goal is to achieve a higher-level generalization while reducing algorithmic complexity, making experiments reproducible on available commercial computers with quad-core microprocessors. ProgNet is tested on the popular New Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS) dataset describing real flight scenarios. To the extent we can report, this is the first time that all N-CMAPSS subsets have been fully screened in such an experiment. ProgNet evaluations with numerous metrics, including the well-known CMAPSS scoring function, demonstrate promising performance levels, reaching 234.61 for the entire test set. This is approximately four times better than the results obtained with the compared conventional deep learning models.

Aksa, Karima, and Mohieddine Harrag. 2022. “Surveillance Des Zones Critiques Et Des Accès Non Autorisés En Utilisant La Technologie Rfid”. khazzartech الاقتصاد الصناعي 12 (1) : 702-717. Publisher's Version Abstract

La surveillance est la fonction d'observer toutes activités humaine ou environnementales dans le but de superviser, contrôler ou même réagir sur un cas particulier; ce qu’on appelle la supervision ou le monitoring. La technologie de la radio-identification, connue sous l’abréviation RFID (de l’anglais Radio Frequency IDentification), est l’une des technologies utilisées pour récupérer des données à distance de les mémoriser et même de les traiter. C’est une technologie d’actualité et l’une des technologies de l’industrie 4.0 qui s'intègre dans de nombreux domaines de la vie quotidienne notamment la surveillance et le contrôle d’accès. L’objectif de cet article est de montrer comment protéger et surveiller en temps réel des zones industrielles critiques et de tous types d'accès non autorisés de toute personne (employés, visiteurs…) en utilisant la technologie RFID et cela à travers des exemples de simulation à l'aide d’un simulateur dédié aux réseaux de capteurs.

In this study, we investigate a production planning problem in hybrid manufacturing remanufacturing production system. The objective is the determine the best mix between the manufacturing of new products, and the remanufacturing of recovered products, based on economic and environmental considerations. It consists to determine the best manufacturing and remanufacturing plans to minimising the total economic cost (start-up and production costs of new and remanufactured products, storage costs of new and returned products and disposal costs) and the carbon emissions (new products, remanufactured products and disposed products). The hybrid system consists of a set of machines used to produce new products and remanufactured products of different grades (qualities). We assume that remanufacturing is more environmentally efficient, because it allows to reduce the disposal of used products. A multi-objective mathematical model is developed, and a non dominated sorting genetic algorithm (NSGA-II) based approach is proposed. Numerical experience is presented to study the impact of carbon emissions generated by new, remanufactured and disposed products, over a production horizon of several periods.

Aouag, Hichem, Mohyeddine Soltani, and Mohyeddine Soltani. 2022. “Benchmarking framework for sustainable manufacturing based MCDM techniques Benchmarking”. Benchmarking: An International Journal 29 (1). Publisher's Version Abstract

Purpose

The purpose of this paper is to develop a model for sustainable manufacturing by adopting a combined approach using AHP, fuzzy TOPSIS and fuzzy EDAS methods. The proposed model aims to identify and prioritize the sustainable factors and technical requirements that help in improving the sustainability of manufacturing processes.

Design/methodology/approach

The proposed approach integrates both AHP, Fuzzy EDAS and Fuzzy TOPSIS. AHP method is used to generate the weights of the sustainable factors. Fuzzy EDAS and Fuzzy TOPSIS are applied to rank and determine the application priority of a set of improvement approaches. The ranks carried out from each MCDM approach is assessed by computing the spearman's correlation coefficient.

Findings

The results reveal the proposed model is efficient in sustainable factors and the technical requirements prioritizing. In addition, the results carried out from this study indicate the high efficiency of AHP, Fuzzy EDAS and Fuzzy TOPSIS in decision making. Besides, the results indicate that the model provides a useable methodology for managers' staff to select the desirable sustainable factors and technical requirements for sustainable manufacturing.

Research limitations/implications

The main limitation of this paper is that the proposed approach investigates an average number of factors and technical requirements.

Originality/value

This paper investigates an integrated MCDM approach for sustainable factors and technical requirements prioritization. In addition, the presented work pointed out that AHP, Fuzzy EDAS and Fuzzy TOPSIS approach can manipulate several conflict attributes in a sustainable manufacturing context.