Publications

Bekkar B, Saidi L. Optimal Distributed Power control in wireless cellular network based on Mixed Kalman/H∞ Filtering. International Journal of Electronics and Communications. 2018;90 :103-109.Abstract

In any wireless cellular network, power control is one of the most important dynamic radio resource management (RRM) schemes which increases the capacity and performance of the system. In this paper, we present a modified scheme to Distributed Power control that optimize the transmission power of mobile’s and signal-to-interference-plus-noise ratio (SINR) error. This method, based on minimization of performance criterion, achieves the minimum SINR error and power consumption at the next time instant. The Mixed Kalman/H∞ Filter with covariance intersection has been applied in the proposed scheme to estimate and predict the channel variation and still ensure a good robustness. Finally, the mixed Kalman/H∞ filter based power control method is compared with Kalman filter and H∞ filter based power control results show that our method provides robustness against practical impairments, such as measurement uncertainties and fast channel variations.

Bouguerra F, Saidi L. An Efficient ANN Interference Cancellation for High Order Modulation over Rayleigh Fading Channel. Journal of Telecommunications and Information Technology (JTIT). 2018;8 (4) :75-80.Abstract

High order modulation (HOM) presents a key challenge in increasing spectrum efficiency in 4G and upcoming 5G communication systems. In this paper, two non-linear adaptive equalizer techniques based on multilayer perceptron (MLP) and radial basis function (RBF) are designed and applied on HOM to optimize its performance despite its high sensitivity to noise and channel distortions. The artificial neural network’s (ANN) adaptive equalizer architectures and learning methods are simplified to avoid more complexity and to ensure greater speed in symbol decision making. They will be compared with the following popular adaptive filters: least mean square (LMS) and recursive least squares (RLS), in terms of bit error rate (BER) and minimum square error (MSE) with 16, 64, 128, 256, 512 and 1024 quadrature amplitude modulation (QAM). By that, this work will show the advantage that the MLP equalizer has, in most cases, over RBF and traditional linear equalizers. © 2018 National Institute of Telecommunications. All rights reserved.

Belkacem R-E-M, Benzid R, Bouguechal N. Multilevel inverter with optimal THD through the firefly algorithm. Archives of Electrical Engineering. 2017;66 (1) :141–154.Abstract

Reduction of the Total Harmonic Distortion (THD) in multilevel inverters requires resolution of complex nonlinear transcendental equations; in this paper we propose a combination of one of the best existing optimized hardware structures with the recent firefly algorithm, which was used to optimize the THD, through finding the best switching angles and guaranteeing the minimization of harmonics within a user defined bandwidth. The obtained THD through the simulation of the thirteen-level symmetric inverter has been reduced down to 5% (FFT of 60 harmonics). In order to validate the simulation results, a thirteen-level symmetric inverter prototype has been made, and practically experimented and tested with different loads. Consequently, the measured THD with resistive load was 4.7% on a bandwidth of 3 kHz. The main advantage of the achieved work is the reduction of the THD.

MEDJGHOU A, GHANAI M, CHAFAAA K. Robust Feedback Linearization Control Framework Using an Optimized Extended Kalman Filter. Journal of Engineering Science and Technology Review. 2017;10 (5) :1-16.Abstract

A robust nonlinear controller based on an improved feedback linearization technique with state observer is developed for a class of nonlinear systems with uncertainties and external disturbances. First, by combining classical feedback linearization approach with a discontinuous control and a fuzzy logic system, we design and study a robust controller for uncertain nonlinear systems. Second, we propose an optimized extended Kalman filter (EKF) for the observation of the states. The parameters to be optimized are the covariance matrices Q and R, which play an important role in the EKF performances. The particle swarm optimization algorithm insures this optimization. Lyapunov synthesis approach is used to prove the stability of the whole control loop. The proposed approach is applied on a two-link robot system under Matlab environment. Simulation results have confirmed the effectiveness of the proposed approach against uncertainties and external disturbances; and exhibited a more superior performance than the non-improved control actions.

Zerrouki N, Goléa N, Benoudjit N. Particle Swarm Optimization of Non Uniform Rational B-Splines for Robot Manipulators Path Planning. Periodica Polytechnica Electrical Engineering and Computer Science . 2017;61 (4) :337-349.Abstract

The path-planning problem is commonly formulated to handle the obstacle avoidance constraints. This problem becomes more complicated when further restrictions are added. It often requires efficient algorithms to be solved. In this paper, a new approach is proposed where the path is described by means of Non Uniform Rational B-Splines (NURBS for short) with more additional constraints. An evolutionary technique called Particle Swarm Optimization (PSO) with three options of particles velocity updating offering three alternatives namely the PSO with inertia weight (PSO-W), the constriction factor PSO (PSO-C) and the combination of the two(PSO-WC); are used to optimize the weights of the control points that serve as parameters of the algorithm describing the path. Simulation results show how the mixture of the first two options produces a powerful algorithm, specifically (PSO-WC), in producing a compromise between fast convergence and large number of potential solution. In addition, the whole approach seems to be flexible, powerful and useful for the generation of successful smooth trajectories for robot manipulator which are independent from environment conditions.