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Abstract 
 

A robust nonlinear controller based on an improved feedback linearization technique with state observer is developed for 
a class of nonlinear systems with uncertainties and external disturbances. First, by combining classical feedback 
linearization approach with a discontinuous control and a fuzzy logic system, we design and study a robust controller for 
uncertain nonlinear systems. Second, we propose an optimized extended Kalman filter (EKF) for the observation of the 
states. The parameters to be optimized are the covariance matrices Q and R, which play an important role in the EKF 
performances. The particle swarm optimization algorithm insures this optimization. Lyapunov synthesis approach is used 
to prove the stability of the whole control loop. The proposed approach is applied on a two-link robot system under 
Matlab environment. Simulation results have confirmed the effectiveness of the proposed approach against uncertainties 
and external disturbances; and exhibited a more superior performance than the non-improved control actions. 
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1.  Introduction 
 
The control design has played an increasingly important role 
in industrial applications and in advanced science i.e., 
mechanical engineering systems, aerospace and robotics. 
The main objectives for control system design are stability, 
good tracking and disturbance rejection [1]. Feedback 
linearization is an approach to nonlinear control design 
which has attracted a great interest of researchers in recent 
years [2-4]. The basic idea of the approach is to algebraically 
transform a nonlinear system dynamics into a fully, or 
partially linear one, and then linear control techniques can be 
used. In the classical feedback linearization [5], the presence 
of uncertainties can perturb the function of the feedback 
linearization controller which can lead to system 
instabilities. In the nonlinear control design, the question of 
how to handle the parametric uncertainty and disturbances is 
one of the important issues in the control theory. In this 
context, we find in the literature that classical feedback 
linearization was combined with some control approaches to 
solve the problem of robustness [2-4, 6-12]. 
 In practice, the state variables of a given system are 
rarely available for direct measurement. In most cases, 
there’s a real needing for reliably estimate unmeasured 
states; the elaboration of a control law of a given system 
often requires access to the value of one or more of its states. 
For this reason, it is necessary to design an auxiliary 
dynamic system; named observer, capable to deliver state 
estimates from the measurements provided by physical 
sensors and applied inputs. In the case of linear systems, the 

solution to observer’s synthesis problem was completely 
resolved by Kalman [13] and Luenberger [14]. Contrarily, in 
nonlinear systems, there’s not a general solution to the 
problem of observer synthesis which prompted researchers 
to develop nonlinear observers. Several algorithms on this 
subject can be found in the literature, namely extended 
Luenberger observer [15,16], extended Kalman filter 
[17,18], sliding mode observer (SMO) [19], model reference 
adaptive system [20], artificial neural network observer [21] 
and fuzzy logic observer [22,23]. 
 Amongst all these algorithms, EKF provides the optimal 
state estimator due to its ability to consider the stochastic 
uncertainties. EKF is a recursive algorithm based on the 
knowledge of the statistics of both measurement and state 
noises. Compared to other nonlinear observers [24], EKF 
algorithm has better dynamic behavior, resistance to 
uncertainties and noise, and it can work even in the presence 
of a standstill conditions. Estimation performance is the 
major problem associated to EKF; it strongly influences the 
parameter values of the system, state and measurement noise 
covariance matrices Q and R, respectively. Following [25], 
Q and R have to be acquired by taking into account the 
stochastic properties of the corresponding noises that is why 
in most cases Q and R are usually unknown matrices. 
However, since these are usually not known, in most cases, 
the covariance matrices are used as weighting factors 
(factors adjustment). Moreover, these matrices were first 
tuned manually by trial-error methods which are very 
tedious procedures due to large time consumption [26]. To 
overcome this problem and to avoid the computational 
complexity of trial-error method, authors in [27] have used 
genetic algorithms (AGs) to optimize these matrices 
automatically. 
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Two contributions will be proposed in this investigation:  
 

(1) First, a new form of feedback linearization, called 
improved feedback linearization controller. This controller 
combines classical feedback linearization, discontinuous 
control and fuzzy logic. In the proposed approach, a 
feedback linearization control law is first designed for 
control purposes (stability, trajectory tracking) using pole 
placement. Then, a discontinuous control is added to 
guarantee that the state reaches the sliding mode in the 
presence of parameter uncertainties and external 
disturbances. Fuzzy logic system is employed to improve 
control performance and to reduce chattering phenomenon in 
the sliding mode.  
(2) Second, an optimized EKF observer for system states 
estimation in which the optimization of EKF matrices (Q 
and R) is ensured by an alternative optimization method 
proposed in [28] which is an evolutionary algorithm inspired 
by social interactions, that relates to particle swarm 
optimization (PSO) algorithm.  
This paper is structured as follows. In Section 2, we present 
the problematic and a detailed explanation of the proposed 
method. Simulation results are conducted in Section 3. 
Finally, conclusions are given in Section 4. 
 
 
2.  Problem formulation and proposed method 
 
2.1  Problem statement 
Consider the  nth

 order nonlinear uncertain system which is 
described by:  

 

  

x(n) = f ( X )+ g( X )u+ d
y = x

⎧
⎨
⎪

⎩⎪    
 (1) 

 
where   x(n)  is the nth time derivative of  x ,   y ∈R  is the 
output of the system,   u ∈R  is the control,  d  represents 
the sum of the parametric uncertainties and external 
disturbances,  f  and  g  are both unknown real continuous 
functions assumed to be bounded. We suppose that the 

system state vector   X = (x1,x2 ,...,xn )T

   = (x, !x,...,x(n−1) )T ∈ Rn is unavailable for measurement and it 
will be estimated by the EKF (see Fig. 1). The control 
objective is to find a control law   u = u( X̂ )  such that even in 
the presence of external disturbances and modeling 
imprecision, the state vector  X  will track a given desired 
bounded reference trajectory 

   Xd = (xd , !xd ,...,xd
(n−1) )T .

 
 In respect of the dynamic system presented in Eq.1, the 
following assumptions will be made: 
 
Assumption 1. The function  f  is unknown but the error on 

its estimate is bounded, i.e.
  

f ( X̂ )− f ( X ) ≤ F
 

where 

  f ( X̂ ) is an estimate of   f ( X ) . 
Assumption 2. The input gain  g  is unknown but positive 
and bounded, i.e. 

  
0 < gmin ≤ g( X ) ≤ gmax . 

Assumption 3. The disturbance  d  
is unknown but 

bounded, i.e.  | d |≤ D where   D > 0 . 

Assumption 4. The desired trajectory  Xd  is once 
differentiable in time. Furthermore, every element of vector 

 Xd , as well as   xd
(n)  is available and with known bounds. 

 
 Concerning the nonlinear control problem, we propose to 
use the feedback linearization approach [29]. This choice is 
motivated by its ability to controlling nonlinear systems and 
its design simplicity. 
 
2.2  Proposed control design 
Let    e = x̂− xd  be the tracking error, therefore, the feedback 
linearization control law with EKF algorithm can be 
computed easily as follows 
 

   
u* =

1
g( X̂ )

− f ( X̂ )− k feed
T e + !!xd( )    (2) 

 

where 
   
e = e, !e( )T

is the tracking error vector and 

  
k feed =(k1,k2 )T

 is chosen such that   R( p)= p2 + k2 p+ ...+ k1  

is a Hurwitz polynomial. 
 By combining control law Eq.2 and system Eq.1, we get 
the following error dynamics: 
 

   !!e+ k2 !e+ k1 e = 0        (3) 
 
in which the main objective will be 

  
lim
t→∞

e(t) = 0 . 

 
Fig. 1. Schematic diagram of EKF optimization based proposed control 
approach 
 
 The presence of uncertainties and disturbances can 
perturb the feedback linearization controller working; 
therefore, system dynamics may lead to instabilities like 
static errors (see [5]). To overcome this problem, we propose 
to improve this control by adding a discontinuous control as 
shown in Fig. 1. Discontinuous control can be found in 
sliding mode control. This choice is motivated by its high 
robustness against uncertainties and disturbances. So, the 
whole control law will be constituted of two terms: feedback 
linearization control term 

  
u*( )  and a discontinuous control 

term 
 

udis( )  as follows: 

 

  u = u* + udis
   
=

1
g( X̂ )

− f ( X̂ )− k feed
T e + !!xd( )− K sign s( )    (4) 

 
where  
 
 s  is defined by a sliding surface and described by the state 
space equations   s(e) = 0 , such that:   
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s(e) = ( ∂

∂t
+λ)(r−1) e       (5) 

 
with   s : Rn → R  [29]. 
 
 In the two dimensional case   (r = 2) , Eq.5 becomes 
 
  s = !e+λe        (6) 
 
 So, the time derivative of  s  will be 
 
  !s = !!e+λ !e          (7) 
 
 The use of the discontinuous sign function will excite an 
undesired phenomenon called chatter caused by the 
discontinuous switching function. In this context high 
switching gain  K  of  udis  in Eq.4 will lead to an increase in 
oscillations of the control input signal, and therefore an 
excitation of high frequency dynamics, consequently, a 
chattering phenomenon will be created. Moreover, a low 
switching gain  K  can reduce the chattering phenomenon 
and improve the tracking performance despite uncertainties 
and external disturbances. However, increasing the gain 
causes an increase of the oscillations in input control around 
the sliding surface. To achieve more appropriate 
performance, this gain must be adjusted. This adjustment is 
based on the distance between the system states and the 
sliding surface. That is to say, the gain should be high when 
the state trajectory is far from the sliding surface, and when 
the distance decreases, it should be reduced. This idea can be 
realized by combining fuzzy logic with discontinuous 
control to adjust the gain  K  adaptively (see Fig. 1) 
according to some appropriate fuzzy rules. 
 For this reason, a one-input one-output FLS is designed 
with an input  s  which reflects the distance of the error 
trajectory to the sliding surface. The output of the fuzzy 
system is denoted by 

 
K fuzzy .  

 An FLS, consists of four parts: the knowledge base, the 
fuzzifier, the fuzzy inference engine, and the defuzzifier. The 
knowledge base is composed of a collection of fuzzy If-then 
rules whose rules can be stated in a linguistic manner as 
follows:  
 

  
Rl : If s is Al , Then K fuzzy is Bl ,   l =1,2,..., N  

 
where  Ai

l  and  Bi
l  are fuzzy sets, which are associated with 

the fuzzy membership functions 
  
µ

Al (s)  and 
  
µ

Bl (K fuzzy ) , 

respectively and N is the total number of rules.  
 Note that the singleton fuzzifications, center average 
defuzzification, Mamdani implication and product inference 
engine are used in this paper. Therefore, the output of the 
fuzzy system could be described by the following equation: 
 

  

K fuzzy (s) =
ξ l

l=1

N
∑ Π j=1

n µ
Al

j (sj )( )
l=1

N
∑ Π j=1

n µ
Al

j (sj )( )
     (8) 

 

where  n  is the number of system states,  ξ l  is the centre of 

gravity of the membership function of 
 
K fuzzy  for the  l th  rule.   

 Therefore, the control law Eq.4 becomes: 
 

  
u = u* + K fuzzy udis  

   
=

1
g( X̂ )

− f ( X̂ )− k feed
T e + !!xd( )− KT sign s( )

 
 (9) 

 
with 

 
K fuzzy  is the output of the FLS as shown in Fig. 1 and 

therefore the final gain becomes 
 
KT = K fuzzy × K . 

 Based on Assumptions 1– 3 and considering that the 
estimate   g( X̂ )  could be chosen according to the geometric 

mean 
  g( X̂ ) = gmingmax , the bounds of   g( X )  may be 

expressed as   β
−1 < g( X̂ ) / g( X ) < β  where 

  β = gmax / gmin .  

Under this condition, the gain  KT  should be chosen 
according to:   
 

  
KT ≥ β g−1( X̂ ) η+D+ F( )+ g−1( X̂ ) û1 −β û2( )  

(10) 

 
where η  is a strictly positive constant related to the 
reaching-time. 
 In order to dominate the states of the system to arrive to 
the sliding surface   s = 0  in a limited time and to stay there, 
the control law must be designed so that the sliding 
condition described in Eq.11 is satisfied. 
 

  
1
2

d
dt

s2 ≤ −η s      (11) 

 
 This goal is assured by the following lemma.  
 
Lemma: 
Consider the uncertain nonlinear system Eq.1 and 
Assumptions 1–4. If the control input  u  is selected as Eq.9 
and by considering  KT  as Eq.10, then, the previous 
condition Eq.11 is satisfied, which ensures the convergence 
of the tracking error vector to the sliding surface s. 
 
Proof: 
 Consider the Lyapunov function candidate   
 

  L = (1 2)s2      (12) 
 
 Its time derivative is given as  
 

   
!L = 1

2
d
dt

s2
  = s !s

  
= !!e+λ !e( )s   

= !!x − !!xd +λ !e( )s

   
= f ( X )+ g( X )u+ d − !!xd +λ !e( )s

 

         
= f ( X )+ g( X ) g−1( X̂ ) − f ( X̂ )+ !!xd −(⎡
⎣  

   
k feed

T e)− g( X ) KT sign s( )+ d − !!xd +λ !e
⎤
⎦s  
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 Noting that:    f ( X ) = f ( X̂ )−  
  

f ( X̂ )− f ( X )⎡
⎣

⎤
⎦ , 

   
û1 = − f ( X̂ )+ !!xd − k feed

T e  and 
   û2 = − f ( X̂ )+ !!xd −[0, λ]T e one 

has 
 

   
!L = − f ( X̂ )− f ( X )( )+ d + g( X ) g−1( X̂ )⎡

⎣ û1

  
−û2 − g( X ) KT sign s( )⎤⎦s     (13) 

 
Therefore, considering Assumptions 1 and 2, and defining 

 KT  according to Eq.10,   !L  becomes 
 

   !L ≤ −η|s|      (14) 
 
which implies   L(t) ≤ L(0) . From the definition of  s  in 
Eq.6, it can be verified that  e  is bounded. Thus, assumption 
4, Eqs.6 and 7 imply that  s  and   !s  are also bounded. 
 
 The finite time convergence of the tracking error vector 
to the sliding surface to the sliding surface can be 
represented as follows: 
 

   
!L = 1

2
d
dt

s2 = s!s ≤ −η|s|     (15) 

 
 Then, dividing by  |s| and integrating both sides over the 
interval   0 < t < ts , in which  ts  is the time required to hit  s , 
gives 

   

s
|s|0

t
∫ !sdτ ≤ − η dτ

0

t
∫

 

  
s(t = ts ) − s(t = 0) < −η ts  

 
 In this way, considering  treach  as the time required to hit 

 s  and noting that 
  
s( treach ) = 0 , one has 

   
treach ≤

s(0)
η     

 (16) 

and, consequently, the finite time convergence to the sliding 
surface  s . 
 
2.3 Extended Kalman filter 
Extended Kalman filter is a generalization of the Kalman 
filter which is a stochastic observer for nonlinear dynamical 
systems. In this paper, we shall attempt to find the best 
estimate of the state vector  Xk  of the system which evolves 
according to the following discrete-time nonlinear dynamic: 

 

  

Xk+1 = f ( Xk ,uk ,wk )
Zk = h( Xk ,vk )

⎧
⎨
⎪

⎩⎪
    (17) 

 
where   f (.)  represents the evolution function of the system, 

  h(.)  represents the relationship between the state vector and 

the measurement result   Zk ,  whereas  uk  stands for the 

control input to the system at discrete time  k  , and  wk  and 

 vk  are the process and measurement white Gaussian noise 

vectors with zero mean and with  associated covariance 
matrices   Q = E[wk ,wk

T ]  and   R = E[vk ,vk
T ] , respectively. 

 To apply EKF to the nonlinearity given by Eq.17, it must 
be linearized by using first order Taylor approximation near 
a desired reference point   ( X̂ k , ŵk = 0, v̂k = 0),  which gives 
the following approximated linear model: 
 

  

Xk+1 ≈ f ( Xk ,uk ,wk ) ≈ f ( X̂ k ,uk ,0)+ Fk ( Xk − X̂ k )+Wk (wk −0)

Zk ≈ h( Xk ,vk ) ≈ h( X̂ k ,0)+Hk ( Xk − X̂ k )+Vk (vk −0)

⎧
⎨
⎪

⎩⎪  
(18) 

 
where  Fk ,  Wk ,  Hk  and  Vk   are the Jacobean matrices given 
by: 
 

  
Fk =

∂ f ( X ,0)
∂X X= X̂

, 
  
Wk =

∂ f ( X̂ k ,w)
∂w

w=0

, 
  
Hk =

∂h( X ,0)
∂X X= X̂

and  
  
Vk =

∂h( X̂ k ,v)
∂v

v=0     
(19) 

 
 The EKF is a recursive algorithm that is used for 
estimating state vector of the nonlinear dynamical systems. 
It consists of two parts, namely, the prediction and 
measurement correction. It can be described as follows: 
 

Prediction: 

  

X̂ k+1/k = f ( X̂ k /k ,uk ,0)

Pk+1/k = Fk Pk /k Fk
T +WkQWk

T

⎧

⎨
⎪

⎩
⎪

 
 (20) 

 
 Computation of the Kalman Gain  Kk  as 
 

  Kk = Pk+1/k Hk
T (Hk Pk+1/k Hk

T +Vk RVk
T )−1

  (21) 
 
 Then update the state estimate and predict the state 
covariance as 
 
 Correction: 
 

 

  

X̂ k+1/k+1 = X̂ k+1/k +Kk (Zk − h( X̂ k+1/k ,0))

Pk+1/k+1 = Pk+1/k − Kk Hk Pk+1/k

⎧

⎨
⎪

⎩
⎪

  (22) 

 
where   X̂ k+1/k  denotes the priori state prediction vector, 

  X̂ k+1/k+1  is the posteriori state prediction vector,   Pk+1/k  

denotes the priori prediction error covariance matrix,   X̂ k+1/k  
is the posteriori prediction error covariance matrix. 
Therefore, the functional representation of EKF algorithm is 
depicted in Fig. 1. 
 Determination of matrices Q and R is a difficult task, 
especially when the corresponding noises have unknown 
stochastic properties. In order to avoid this problem, these 
matrices will be considered as free parameters to be 
adjusted. In the literature, Bolognani S, and al. (1999) were 
the first who adjusted these matrices manually with trial-
error method [26]. Unfortunately, this method is a tedious 
task. Therefore, to overcome this difficulty and to avoid 
trial-error method, authors in [27] have used genetic 
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algorithms to optimize these matrices automatically. In our 
work, we suggest to use a recently proposed method for the 
adjusting and optimization of covariance matrices Q and R 
by using the PSO algorithm [28].  
 
2.4  Particle Swarm Optimization algorithm 
Particle Swarm Optimization (PSO) was developed by 
Kennedy and Eberhart in 1995. The main idea of PSO 
algorithm was based on the simulation of simplified social 
models such as bird flocking or fish schooling. The PSO is 
used in a wide range of applications such as optimization; a 
framework for the optimization algorithm has been 
developed based on PSO algorithm.  
In this work, the main PSO task is depicted in Fig. 1, where 
we running it in an offline way with EKF in order to 
efficiently find the optimal covariance matrices Q and R, we 
will call this combination PSO-EKF. Mean square error 
(MSE) criterion defined in Eq.23 is used in this paper as 
fitness/objective function between the actual output and the 
estimated one according to a certain number of iterations  N  
to be performed for each step of estimation. 
 

  
MSE =

1
N

( yi − ŷi )i=1

N
∑

2

   
 (23) 

 
where   ŷ  is an estimate of the output  y  and  N  denotes the 
number of data samples. 
 The control input  u  and the measured response  y  will 
be considered as input signals to EKF observer, where  u  is 
applied to both nonlinear system and extended Kalman filter.  
 The Actual output  y  and the estimated output   ŷ  are set 
to be the inputs of the performance evaluator of the PSO 
module through a comparator. The fitness function is 
calculated by the performance evaluator. Then, obtained 
values of MSE will be used in the PSO algorithm. Based on 
these values, PSO optimizer will calculate and optimize the 
unknown parameters of covariance matrices Q and R. After 
that, we get the best set of particles by updating the particles 
solutions according to updating Eqs.24 and 25 as follows: 
 

  
vi (k +1) = w.vi (k)+ c1.r1(k). pbi (k)− xi (k)( )  
 

  
+c2.r2(k). pg (k)− xi (k)( )     

(24) 

 
  xi (k +1) = xi (k)+ vi (k +1)     (25) 
 
where   vi (k)  and   xi (k)  are the current velocity and position 

of particle  i  at time  k , respectively.   r1(k)  and   r2(k)  are 
two independent random sequences uniformly distributed 
between 0 and 1. The parameters   c1  and   c2  are the 
cognitive and the social accelerations coefficients, 
respectively, with positive values.  w  is the inertia weight 
factor. The value   pbi (k)  is the best local position for 

particle i , and 
  
pg (k)  is the best global position both at time 

 k . 
 Once the velocity for each particle is calculated, Eq.24 
updates the velocity to the new one. The new position is then 
determined by the sum of the new velocity and the previous 
position by Eq.24. 

 The new position and updated matrices Q and R are then 
used to adapt the EKF for the next iteration until a 
predefined number of iterations have been reached, and then 
optimal matrices Q and R are obtained. Finally, optimized Q 
and R are injected into EKF observer for a future online 
running. 
 Note that the PSO-EKF algorithm is executed in an 
offline manner for the reason that PSO algorithm requires 
several iterations to achieve optimal solutions. For each 
iteration PSO-EKF algorithm must be executed once. 
Therefore, PSO-EKF algorithm should be executed several 
times allowing the optimization of the parameters Q and R, 
from each measurement. 
 
 
3.  Simulations and discussions 
 
In order to verify the performance of proposed optimized 
observer-based control scheme, let us consider two degrees 
of freedom planar manipulator with revolute joints shown in 
Fig. 2.  
 
 

 
 
Fig. 2. Two-link robot manipulator 
 
 
where  li is the link length,  mi is the link mass,  Ii is the link's 

moment of inertia given in center of mass,  
lci

is the distance 

between the center of mass of link and the  ith  joint. 
The dynamic of the two-link robot manipulator can be 
described by the following differential equations [30]: 

 

   

m11 m12

m12 m22

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

!!θ1

!!θ2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+

c11 c12

c21 c22

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

!θ1

!θ2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+

+
G1

G2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

τ 1

τ 2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+

d1

d2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

  
(26) 

l1 

l2 

lc1 

θ1,τ1 

lc2 
I2,m2 

I1,m1 

θ2,τ2 

y 

x 
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the matrix 
  
M0 = [m ij ]2×2 is given by:     

 

  
m11 = m1lc1

2 +m2 l1
2 + lc2

2 +2m2l1lc2 cos θ2( )( )+ I1+ I2      
 

  
m12 = m2 lc2

2 + l1lc2 cos θ2( )( )+ I2  

  m22 = m2l2
2 + I2  

 
the matrix 

  
C0 = [cij ]2×2 is defined by: 

 

   c11 = a !θ2 ,       c12 = a !θ1+ a !θ2 ,        c21 = −a !θ1,       c22 = 0,  
 
where   a = −m2l1lc2 sinθ2 ,   
 
the vector  G0 = [G1,G 2]T  is given by: 
 

  
G1 = m1lc1+m2l1( )g cos θ1( )+m2lc2 gcos θ1+θ2( )  

 

  
G2 = m2lc2 gcos θ1+θ2( )  
 
 The vector   [d1,d2]T represents the external load that the 
robot can take. 
 
 Due to modeling error (parameter variation and unknown 
load), it is assumed that the dynamic model of the 
manipulator (26) presents a certain uncertainty. Therefore, 

   M (θ ),C(θ , !θ )  and   G(θ ) can be written as 
 

  M (θ ) = M0(θ )+ΔM (θ )∈ R2×2

    (27) 
 

   C(θ , !θ ) =C0(θ , !θ )+ΔC(θ , !θ )∈ R2×2     (28) 
 

  G(θ ) =G0(θ )+ΔG(θ )∈ R2×1     (29) 
 
where   M0(θ ) , 

   C0(θ , !θ )  and   G0(θ )  are nominal parts, 

whereas   ΔM (θ ) ,    ΔC(θ , !θ )  and   ΔG(θ )  are the parameters 
uncertainties. 
 The dynamic model of the robotic manipulator (26) with 
parameters uncertainties and disturbance can be rewritten as 
following: 
 

   
M0 θ( ) !!θ +C0 θ , !θ( ) !θ +G0 θ( )+ d t( ) = τ   (30) 

 
where 

   
d t( ) = ΔM θ( )+ΔC θ , !θ( )+ΔG θ( )+δ(t) ∈ R2  

represents the sum of the parametric uncertainties and 
external disturbances (  δ(t) ). 
 To control the robot system, the state variable vector is 
chosen to be 

   X = [θ1, !θ1,θ2 , !θ2]T = [x1,x2 ,x3,x4]T . 

 Choosing as output the position 
  
y = [θ1,θ2]T = x1,x3

⎡⎣ ⎤⎦
T

, 

The dynamic equations are given as: 
 

   

!x1 = x2

!x2 = f1( X )+ g1( X ) τ 1+δ1

!x3 = x4

!x4 = f2( X )+ g2( X ) τ 2 +δ2

y1 =x1

y2 = x3

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

    (31) 

 
where the dynamics   f ( X )  and   g( X )  are given as follows  

 

   

f =
f1

f2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= M0

−1 −C0[ !x1, !x2]−G0( ) ,    

  

g =
g1

g2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= M0

−1

     
(32) 

 
 Since Kalman filter is a discrete algorithm, then 
discretization of the model is needed. This discretization will 
be done using the forward Euler method which provides an 
acceptable approximation of the systems dynamics for a 
short sampling period.  
 The resulting global discrete form will be given by the 
following discrete nonlinear representation: 
 

  

x1(k +1) = x1(k)+Δt. x2(k)+w1(k)

x2(k +1) = x2(k)+Δt f1( X ,k)+ g1( X ,k)τ 1(k)+δ1(k)⎡⎣ ⎤⎦+w2(k)

x3(k +1) = x3(k)+Δt. x4(k)+w3(k)

x4(k +1) = x4(k)+Δt f2( X ,k)+ g2( X ,k)τ 2(k)+δ2(k)⎡⎣ ⎤⎦+w4(k)

z1(k) = x1(k)+ v1(k)
z2(k) = x2(k)+ v2(k)

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

  
(33) 

 
where  Δt is the sampling period,  k  is the discrete-time 
point and   w(k) = [w1(k) w2(k) w3(k) w4(k)]  and 

  v(k) = [v1(k) v2(k)]  are the process and measurement white 
Gaussian noise vectors with zero mean and with  associated 
covariance matrices  
 

  Q = E[wk ,wk
T ]  and   R = E[vk ,vk

T ] , respectively. 
 In this simulation, the nominal parameters of the robot 
are given as 
 

  m1 = m2 =1Kg ,   l1 = l2 = 0.5m ,   lc1 = lc2 = 0.25m , 

  I1 = I2 = 0.1Kg.m2 ,  g = 0.81m/s2 . 
 
 In what follows, the proposed algorithm will be applied 
on the above two-link robot manipulator under PC 
simulation using Matlab software environment to show its 
efficiency. A total of   N = 4000  measurement data are 
simulated on a time interval from 0 to 4 seconds with step 
size   Δt = 0.001 s . Note that all codes are written in Matlab 
Language in M-files. 
 The desired reference trajectories for   x1  and   x3  are 

chosen to be   
x1d (t) = 70o  and   

x3d (t) = 90o . The initial values 
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of the system were selected as   x1(0) = 0,    x2(0) = 0,

  x3(0) = 0  and   x4(0) = 0.  
 Three types of uncertainties are injected in the structure 
to verify the robustness of the controller:  (1) Parameters 
uncertainties ( +10%  over the values of nominal model 
parameters) 
 
(2) Random external disturbances which are chosen to be 
uniformly distributed as follows:   d1 = d2 = rand  with   D =1 . 
Note that both disturbances sum to δ  and they will be 
applied at   t > 2s . 
 
(3) Random Gaussian noises for the states and for the 
measurements both with zero mean values and with 
covariance’s  

  q =10−2  and   r =10−5 , respectively. 
 
 EKF is implemented as in Eqs.19 to 22 where the 
Jacobean matrices are defined in Appendix 1. EKF will 
provide the state estimate vector 

   X̂ = [θ̂1, !̂θ1,θ̂2 , !̂θ2]T = [x̂1, x̂2 , x̂3, x̂4]T .  The initial state and 
initial covariance conditions of the EKF are chosen to be 

  X̂0/0 = [0,0,0,0]T and   P0/0 = ones(4,4) , respectively. In the 
simulation, error covariance matrix  P  is set to a  4×4  

matrix. Q and R matrices have dimensions  4×4  and  2×2 , 
respectively, and are assumed having the following form: 
 For comparison purposes, the performance of EKF with 
diverse compositions of Q and R is evaluated by using the 
mean-squared-error Eq.23 of the position-estimating 

response which is defined as: 
  
MSE =

1
T

θi (k)−θ̂i (k)⎡
⎣

⎤
⎦k=1

N
∑

2

, 

  

Q = diag(qx1
,qx2

,qx3
,qx3

) =

qx1
0 0 0

0 qx2
0 0

0 0 qx3
0

0 0 0 qx4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

        

 (34) 

 

  

R = diag(r1,r2 ) =
r1 0

0 r2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

                 (35) 

 
   i =1,2  
 First, we simulate the system under the traditional 
feedback linearization control, in order to show its drawback 
in presence of parametric uncertainties and external 
disturbances. Applying the control law Eq.2, and after some 
trials, we chosen 

  
k feed = 200 I2×2;50 I2×2

⎡⎣ ⎤⎦  where  Ii×i  is an 

 i× i  identity matrix.                  
 
 
Table 1.  EKF Performances for two-link robot using trial-error estimation 

Case 
Q and R entries 

 MSE_EKF Estimation 
quality 

  
qx1

 
  
qx2

 
  
qx3

 
  
qx4

   r1    r2  

1 1 1 1 1 1 1 1.6131 Poor 
2 0.2 10-1 0.2 10-1 10-1 1 3.3692×10-5 Good 
3 10-1 10-1 0.2 0.2 1 10-1 3.2587×10-5 Good 
4 10-1 10-1 10-1 10-1 1 1 3.1821×10-6 Very good 

 
 
  
 
Table 1 shows typical EKF performance with their 
corresponding covariance matrices’ (with entries 

  
qq1

,
   
q !q1

,

  
qq2

,
   
q !q2

,  r1  and   r2 ) obtained by trial-error method. It is 

found that good estimation performance results when Q and 
R are equal (case 2 and 3 in Tab. 1), but a bad selection of (

  
qx1

,
  
qx2

,
  
qx3

,
  
qx4

,  r1  and   r2 ) can produce a poor estimation 

performance (case 1). Note that the best estimation 
performance is obtained with Q and R matrices (

  
qx1

= qx2
= qx3

= qx4
=10−1

 
and   r1 = r2 =1 ) (case 4) which 

corresponds to the smallest MSE. Simulation results relative 
to the best case (case 4) are showed in Fig. 3 where we 
present in Fig. 3(a) and (b) respectively, the position of link-
1 and position of link-2.  
 To compare the performance of EKF observer with other 
observers in terms of MSE, we give in Tab. 2 performances 
relative to sliding mode observer (SMO) [19]. The sliding 
gains of SMO were selected as in Tab. 2.  By comparing 

Tab. 1 and Tab. 2 (see MSE columns), we see clearly that 
both methods gave small MSE, but MSE obtained by EKF 
was smaller than that obtained with SMO observer. 
 
Table 2. Performance of the SMO for two-link robot with 
trial-error estimation 

Case 
SMO gains 

MSE_ SMO Estimation quality 

 γ1   γ2  
1 10-5 10-3 1.3306 Poor 
2 1 1 7.1961×10-5 Good 
3 2 10 4.3120×10-5 Good 
4 30 70 3.2612×10-6 Very good 

 
 Note that the tracking performances are not very 
satisfactory especially after time   t = 2s  when the 
perturbations were applied ( +10%  variation of parameters 
and external disturbance). As can be seen also, the prediction 
accuracy of EKF is not quite satisfactory due to the trial-
error choice for EKF matrices. 
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       (a) 

 
(b)   

Fig. 3. Position of the joint angles using classical feedback linearization control with EKF. 
 

 
 In the rest of this section, the proposed method will be 
applied in order to resolve the above two problems. 
 
3.1. Robustness problem  
 To solve the problem of robustness and acquire a better 
response to this system, control law given by Eq.4 is used in 
which the discontinuous control was added to classical 

feedback linearization control. In this case and after some 
trials, we chosen   K =10 I2×2  and   λ =5 I2×2 ,  where  Ii×i is an 

 i× i  identity matrix. Simulation results are shown in Fig. 4. 
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        (b) 

 
          (d) 

           
     (e) 

   
          (g) 

          
         (f) 

      
            (h) 

Fig. 4. Simulation results using enhancement of feedback linearization via discontinuous control  (a) Position of the joint angle of link-1  (b) Position 
of the joint angle of link-2  (c) Link-1 position estimation and tracking errors  (d) Link-2 position estimation and tracking errors  (e) Phase plane 
portrait for the link-1  (f) Phase plane portrait for the link-2  (g) Control input applied to the link-1  (h) Control input applied to the link-2. 
. 
 We present in Fig. 4(a) and (b) the position of the joint 
angles of link-1 and link-2 using the enhanced feedback 
linearization via discontinuous control. As we see the 
performances under the occurrence of parameter variations 
and external disturbance are satisfactory (see Fig. 4(c) and 
(d)). Contrary to classical feedback linearization alone 

presented in Fig. 3(a) and (b), it appears in this case that the 
tracking performance of the joint angles of link-1 and link-2 
are satisfactory especially after time   t = 2  when the 
perturbation arises. Fig. 4(e) and (f) represent the phase 
plane portrait of the robot, in which we can clearly see that 
the chattering phenomenon is appeared. Fig. 4(g) and (h) 

0 2 4-20

0

20

40

60

80

100

T ime [s]

Li
nk

-2
po

si
ti
on

[d
eg
]

 

 

x 2 desired
x2 actual
x 2 estimate

0 1 2 3 4-2

-1

0

1

T ime [s]

x 2
tr
ac
ki
ng

er
ro
r

0 0.5 1 1.5 2-0.06
-0.04
-0.02

0
0.02

T ime [s]x 2
es
ti
m
at
io
n
er
ro
r

-0.5 0 0.5 1 1.5-7

-6

-5

-4

-3

-2

-1

0

1

E rror e1

Er
ro
rv

ar
ia
tio

n
de

1

 

 

P hase plane portrait
S liding surface S 1

0 1 2 3 4-100

0

100

200

300

400

T ime [s]

Co
nt
ro
li
np

ut
= 1

-1 0 1 2-8

-6

-4

-2

0

2

E rror e2

Er
ro
rv

ar
ia
tio

n
de

2

 

 

P hase plane portrait
S liding surface S 2

0 1 2 3 4-50

0

50

100

150

T ime [s]

C
on

tr
ol

in
pu

t
= 2



Ali Medjghou, Mouna Ghanai and Kheireddine Chafaa/Journal of Engineering Science and Technology Review 10 (5) (2017) 1-16 

 
 

10 

show control inputs applied to the robot, where we note that 
the control performance is not satisfactory due to chattering 
phenomenon caused by the inappropriate selection of the 
switching gain.  
 In order to tackle this problem, the smoothing property 
of fuzzy logic is exploited as seen in section 2 to reduce the 

chattering effect. The memberships functions of  s  and 

 
K fuzzy  are chosen as illustrated in Fig. 5(a) and (b) 

respectively, in which the following linguistic variables have 
been used: Negative (N), Zero (Z), Positive (P), Small (S) 
and Big (B).  

 
         (a) 

 
        (b)

Fig. 5.  (a) Input membership functions (b) Output membership 
functions. 

 
 
The rule set of the adopted FLS contains 3 rules defined as 
following: 

 Rule 1 :   If   s   is  N , Then 
 
K fuzzy  is  B  

 Rule 2 :   If   s   is  Z , Then 
 
K fuzzy  is  Z  

 Rule 3 :   If   s   is  P , Then 
 
K fuzzy  is  S  

These rules govern the input-output relationship between s 
and Kfuzzy by adopting the Mamdani-type inference engine, in 

which the center of gravity method is used for 
defuzzification. 
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            (e) 

 

     
            (f) 

 
             

 
            (g) 

 
            

 
             (h) 

Fig. 6. Simulation results using enhancement of feedback linearization via discontinuous control and FLS (a) Position of the joint angle of link-1 (b) 
Position of the joint angle of link-2 (c) Phase plane portrait for the link-1 (d) Phase plane portrait for the link-2 (e) Control input applied to the link-1 
(f) Control input applied to the link-2 (g) Evolution of fuzzy gain K1 fuzzy (h) Evolution of fuzzy gain K2 fuzzy. 

 
 

 We show in Fig. 6 the simulation results corresponding 
to improvement of switching gain, where we present in Fig. 
6(a) and (b) respectively, the position of the joint angles. 
From comparing the new obtained Phase plane portrait in 
Fig. 6(c) and (d), with the old one Fig. 4(e) and (f), we can 
clearly see that the chattering phenomenon is almost 
disappeared. And comparing the associated control inputs 
presented in Fig. 6(e) and (f), with the old one Fig. 4(g) and 
(h), it is noted that the discontinuities amplitudes are 
reduced. The estimated fuzzy gains are depicted in Fig. 6(g) 
and (h). 
 
3.2. Prediction problem 
Note that in all above simulations, the EKF covariance 
matrices were adjusted by using the trial-error method which 
is simple to achieve but takes a very longtime. To get more 
satisfactory performance, the adjustment will be done 
automatically by PSO algorithm discussed above in section 
2.4.  
 
 

3.2.1. PSO-EKF method 
We suggest searching simultaneously the optimal 
combination of six variances 

  
qx1

,
  
qx2

,
  
qx3

,
  
qx4

,  r1  and   r2  
using Eqs.32 and 33 to find the optimal covariance matrices 
Q and R of the EKF, which will allow to obtain better 
estimates with higher precision than the trial-error method.  
 After running the PSO-EKF, the optimized covariance 
matrices Q and R and their corresponding performances 
MSEs are given in Tab. 3. It should be noted that the 
convergence of the PSO method to the optimal solution 
depends on the parameters   c1 ,   c2  and  w in which self-

recognition coefficient   c1  = 1.5, social coefficient   c2 = 2 and 
Inertia weight varies between  w = 0.3 to 1. Since we have 
six parameters to be optimized, therefore the dimension of 
the simulation will be 6. Note also that the simulated swarm 
has a size of 20 with a maximal number of generations equal 
to 100.  
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Table 3.  Optimized EKF Performances using PSO 

Swarm size Iterations 
Q and R entries 

MSE_PSO  
  
qx1

 
  
qx2

 
  
qx3

 
  
qx4

   r1    r2  

20 

5 10-4 0.0316 10-4 0.0534 0.0685 0.0745 1.5401×10-6 
10 10-4 0.0432 10-4 0.0416 0.0515 0.0621 1.3712×10-6 
50 10-4 0.0005 10-3 0.0001 0.0400 0.0601 1.2049×10-6 

100 10-5 10-5 10-5 10-5 0.4800 0.8637 1.1637×10-6  
 
 
Tab. 3 illustrates the convergence of PSO-EKF algorithm, 
where the MSE is decreased to 1.1637×10-6 after 100 
iterations, which is less than the value obtained by trial-error 
method (

 
MSEtrial−error = 3.1821×10-6) which confirms the 

effectiveness of this method.  
 
3.2.2. Genetic algorithms method 
For comparison purposes, we will present in what follows 
EKF optimization by using GAs. Note that we used genetic 

algorithms with the following parameters: Population 
size=20, Maximal number of generation=100, 
Dimension=6, Crossover probability=0.8 and Mutation 
probability=0.01.  
Optimized covariance matrices using GA algorithms are 
given in Tab. 4 where we see that the MSE is decreased to 
2.4959×10-6 after 100 iterations. Note that this MSE is close 
to the trial-error MSE  which is equal to 3.1821×10-6. 
 

 
Table 4.  Optimized EKF Performances using GA 

Swarm size Iterations 
Q and R entries 

MSE_GAs  
  
qx1

 
  
qx2

 
  
qx3

 
  
qx4

   r1    r2  

20 

5 0.0153 0.0416 10-4 0.0456 0.0772 0.0753 7.4531×10-6 
10 0.0106 0.0112 10-4 0.0324 0.0456 0.0568 6.2235×10-6 
50 0.0081 0.0153 0.001 0.0248 0.0440 0.0654 2.7500×10-6 

100 0.0010 0.1000 10-4 0.0010 0.5000 0.4001 2.4959×10-6 
 
 From the obtained results showed in Tables 3 and 4, 
comparison of PSO-EKF and GAs approaches shows that 
both methods are able to find the optimum design covariance 
matrices Q and R. It can be easily seen that PSO-EKF gives 
more precise results than GAs approach when the number of 
iteration (generation) increases. Therefore, it can be 
confirmed that PSO-EKF can give better estimates than GAs 

approach. Note that the comparison was done under the 
same conditions (generation number, population size, initial 
population). 
 Furthermore, Fig. 7 shows the evolution of the fitness 
function for PSO and GAs methods, respectively; where we 
notice that the convergence of PSO is faster than the 
convergence of GAs. 

 
     (a)  

       (b) 
Fig. 7. Evolution of fitness/objective function versus 100 iterations. (a) PSO relative to Tab. 3, (b) GA relative to Tab. 4. 

 
 In what follows we will present the final simulation 
results relative to the improved feedback linearization 
control with the best optimal values of EKF parameters (see 

Fig.8)  
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           (a) 

          
            (b) 

   
                (c) 

      
                (d) 

  

 
                          (e) 

  

  
                            (f) 

Fig. 8. Simulation results using proposed control for different optimization algorithms (a) Speed of the joint angle of link-1, (b) Speed of the joint 
angle of link-2, (c) Speed estimation errors for the link-1, (d) Speed of the joint angle of link-2, (e) Speed tacking errors for the link-1, (f) Speed 
tacking errors for the link-2. 
 
 In Fig. 8(a) and (b), we present respectively the Link-1 
and Link-2 speed responses with the optimal values of EKF 
covariance matrices given in Tables 1, 3 and 4 for trial-error, 
PSO and GAs optimizations. The corresponding speed 
estimation errors are presented in Fig. 8(c) and (d), 
respectively. Also, the corresponding speed tracking errors 

are presented in Fig. 8(e) and (f), respectively.  
 In all these figures, we see that best results are obtained 
with the proposed PSO-EKF method where it can be seen 
that PSO-EKF fits the true state variables with higher 
accuracy for two-link robot. 
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4.  Conclusions 
 
In this paper, we have proposed an improved and optimized 
feedback linearization controller. The approach combines 
classical feedback linearization, discontinuous control and 
fuzzy systems. The introduced improvement on classical 
feedback linearization was guaranteed by a discontinuous 
control action which itself was also enhanced by a fuzzy 
system. We assumed that not all states are measured; 
therefore an EKF system to observe the hidden states was 
introduced. The performances of EKF has been efficiently 
improved by adjusting the covariance matrices Q and R via 
PSO technique, and the obtained results was validated by a 
short compartive study with GA.  The efectiveness of EKF 

observer is also validated by comparing it with SMO. The 
stability of the proposed approach was guaranteed by 
Lyapunov stability criterion. Simulation results confirmed 
the ability of proposed approach to ensure an acceptable 
robustness and yields superior control performances for 
nonlinear system control against uncertainties and external 
disturbance simultaneously.  
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  
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ppendix 1: Jacobian matrices for the two-link robot                                         
 

  

Fk =

f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

f41 f42 f43 f44

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

,  

  

Wk =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, 
  
Hk =

1 0 0 0
0 0 1 0

⎡

⎣
⎢

⎤

⎦
⎥  and  

  
Vk =

1 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥

 

 
where    f11 =1 ,          f12 = Δt ,          f13 = 0 ,          f14 = 0  

 

  

f21 = Δt (((m2lc2
2 + I2 ) (g S1(l1 m2 + lc1m1)+ g lc2m2S12 )) / (I1I2 + l1

2lc2
2 m2

2 + I2l1
2 m2 + I2lc1

2m1+ I1lc2
2 m2 + lc1

2lc2
2m1m2 − l1

2×

lc2
2m2

2C2
2 )− (g lc2 m2S12 (m2lc2

2 + l1m2C2lc2 + I2 ) ) / (I1I2 + l1
2lc2

2m2
2 + I2l1

2m2 + I2lc1
2 m1+ I1lc2

2 m2 + lc1
2lc2

2m1 m2 − l1
2 ×

lc2
2m2

2C2
2 )).  

 

   

f22 = Δt (⎡⎣ 2 l1 lc2 m2 !q2 S2(m2 lc2
2 + I2 )) / (I1I2 + l1

2 lc2
2 m2

2 + I2l1
2m2 + I2lc1

2m1+ I1lc2
2m2 + lc1

2 lc2
2m1m2 − l1

2lc2
2m2

2C2
2 )+ (2 l1×

lc2m2 !q1S2(m2lc2
2 + l1m2C2lc2 + I2 )) / (I1I2 + l1

2lc2
2m2

2 + I2l1
2m2+ I2lc1

2m1+ I1lc2
2m2 + lc1

2lc2
2m1m2 − l1

2lc2
2m2

2C2
2 )⎤⎦+1.

 

 

   

f23 = (Δt l1 lc2 m2 τ 2 S2 ) / (I1I2 + l1
2 lc2

2 m2
2 + I2 l1

2 m2 + I2lc1
2 m1+ I1lc2

2m2 + lc1
2 lc2

2m1 m2 − l1
2 lc2

2 m2
2 C2

2 )−Δt ( ( (−l1 lc2 m2 ×

C2 !q1
2 + g lc2 m2 S12 ) (m2 lc2

2 + l1 m2 C2 lc2 + I2 ) ) / (I1 I2 + l1
2 lc2

2m2
2 + I2 l1

2m2 + I2 lc1
2 m1+ I1 lc2

2 m2 + lc1
2 lc2

2 m1 m2 −

l1
2 lc2

2 m2
2 C2

2 )− ((m2lc2
2 + I2 ) ( !q2 ( !q1 l1 lc2 m2 C2 + !q2 l1 lc2m2 C2 ) + g lc2 m2S12 + !q1 !q2 l1 lc2 m2C2 )) / (I1I2 +l1

2 lc2
2 m2

2 + I2l1
2 ×

m2 + I2lc1
2m1+ I1lc2

2 m2 + lc1
2 lc2

2 m1 m2 − l1
2 lc2

2 m2
2C2

2 ) + (l1lc2 m2 S2 (l1lc2 m2 S2 x2
2 + g lc2 m2 C12 ) ) / (I1I2 + l1

2 lc2
2 m2

2 +

I2l1
2m2 + I2lc1

2m1+ I1lc2
2m2 + lc1

2lc2
2m1m2 − l1

2 lc2
2m2

2 C2
2 )+ (2 l1

2lc2
2m2

2C2S2 (l1lc2m2S2 !q1
2 + glc2m2C12 ) (m2lc2

2 + l1 m2 C2 ×

lc2 + I2 ) ) / (−l1
2 lc2

2m2
2 C2

2 + l1
2 lc2

2 m2
2 + I2l1

2 m2 +m1 lc1
2 lc2

2 m2 + I2 m1 lc1
2 + I1lc2

2m2 + I1I2 )2 + (2 l1
2 lc2

2 m2
2 C2S2 (m2×

lc2
2I2 ) ( !q2 ( !q1 l1 lc2 m2 S2 + !q2 l1 lc2 m2S2 ) - g C1(l1 m2 lc1+ m1) - g lc2m2C12 + !q1 !q2 l1lc2 m2 S2 ) ) / (-l1

2 lc2
2 m2

2C2
2 + l1

2lc2
2 m2

2+

I2l1
2 m2 +m1 lc1

2 lc2
2 m2 + I2 m1 lc1

2 + I1 lc2
2 m2 + I1I2 )2 )− (2 Δt l1

2lc2
2 m2

2 τ 1 C2S2(m2lc2
2 + I2 ) ) / (−l1

2 lc2
2 m2

2 C2
2 + l1

2 lc2
2 ×

m2
2 + I2l1

2m2 +m1lc1
2 lc2

2 m2 + I2m1lc1
2 + I1lc2

2m2 + I1I2 )2+(2Δt l1
2 lc2

2 m2
2 τ 2 C2 S2 (m2 lc2

2 + l1 m2 C2 lc2 + I2 )) / (−l1
2 lc2

2 ×

m2
2C2

2 + l1
2lc2

2m2
2 + I2 * l1

2 * m2 +m1lc1
2lc2

2m2 + I2m1lc1
2+ I1lc2

2m2 + I1I2 )2.
 

 

   

f24 = (Δt (m2 lc2
2 + I2 ) (2 l1 lc2 m2 !q1 S2 +2 l1lc2 m2 !q2 S2 ) ) / (I1I2+ l1

2 lc2
2m2

2 + I2 l1
2m2 + I2 lc1

2m1+ I1 lc2
2 m2 + lc1

2lc2
2 m1 m2 −

l1
2lc2

2m2
2C2

2 ).  

  f31 = 0  ,          f32 = 0 ,           f33 =1 ,           f34 = Δt  

  

f41 = −Δt (((g S1(l1m2 + lc1m1)+ g lc2 m2 S12 )(m2lc2
2 + l1 m2 C2lc2 + I2 ) ) / (I1I2 + l1

2lc2
2 m2

2 + I2l1
2m2 + I2lc1

2 m1+ I1lc2
2m2 + lc1

2lc2
2 ×

m1m2 − l1
2 lc2

2m2
2 C2

2 )− (g lc2m2 S12(m2l1
2 +2m2 C2 l1 lc2+m1 lc1

2 +m2 lc2
2 + I1+ I2 )) / (I1I2 + l1

2 lc2
2m2

2 + I2l1
2 m2 + I2 lc1

2m1+

I1lc2
2m2 + lc1

2lc2
2m1m2 − l1

2lc2
2m2

2C2
2 )).  

   

f42 = −Δt ( (2 !q2 l1lc2 m2 S2(m2lc2
2 + l1 m2 C2 lc2 + I2 ) ) / (I1I2 + l1

2 lc2
2 m2

2 + I2l1
2 m2 + I2lc1

2 m1+ I1lc2
2 m2 + lc1

2lc2
2 m1m2 −

l1
2lc2

2m2
2 C2

2 ) + (2 !q1 l1lc2 m2 S2 (m2l1
2 +2 m2 C2 l1lc2 +m1lc1

2 + m2lc2
2 + I1+ I2 )) / (I1I2 + l1

2 lc2
2 m2

2 + I2l1
2 m2 + I2 ×

lc1
2 m1 + I1lc2

2m2 + lc1
2lc2

2m1m2 − l1
2 * lc2

2m2
2C2

2 )).  
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f43 = Δt (((g lc2m2S12 − l1lc2 m2 C2 !q1
2 )(m2l1

2 +2m2 C2 l1lc2 +m1lc1
2 +m2lc2

2 + I1+ I2 ) ) / (I1I2 + l1
2lc2

2m2
2 + I2l1

2m2 + I2lc1
2×

m1+ I1lc2
2 m2 + lc1

2 c2
2 m1m2 − l1

2lc2
2m2

2 C2
2 )− ( ( !q2 ( !q1 l1lc2 m2 C2 + !q2 l1lc2m2C2 )+ g lc2 m2S12 + !q1 !q2 l1lc2 m2C2 ) (m2 ×

lc2
2 + l1 m2C2 lc2 + I2 ) ) / (I1I2 + l1

2lc2
2m2

2 + I2l1
2m2 + I2lc1

2m1+ I1lc2
2m2 + lc1

2lc2
2m1m2 − l1

2 lc2
2m2

2C2
2 )+ (l1lc2 m2 S2 ×

( !q2 ( !q1 l1lc2 m2 S2+ !q2 l1lc2 m2 S2 )− g C1 (l1m2 + lc1m1)− g lc2 m2C12 + !q1 !q2 l1lc2 m2 S2 ) ) / (I1I2 + l1
2lc2

2 m2
2 + I2 l1

2m2 +

I2 lc1
2 m1+ I1 lc2

2m2 + lc1
2 lc2

2m1 m2 − l1
2lc2

2 m2
2 C2

2 )+ (2 l1lc2 m2 S2 (l1lc2 m2 S2 !q1
2 + g lc2 m2 C12 )) / (I1I2 + l1

2 lc2
2 m2

2 +

I2l1
2m2 + I2lc1

2m1+ I1lc2
2 m2 + lc1

2 lc2
2m1m2 − l1

2lc2
2m2

2C2
2 )+ (2 l1

2lc2
2 m2

2C2S2 (m2lc2
2 + l1 m2C2lc2 + I2 )( !q2 ( !q1l1lc2 m2×

S2 + !q2 l1lc2 m2S2 )− gC1(l1m2 + lc1 m1)− g lc2m2C12 + !q1 !q2 l1lc2 m2S2 )) / (I1I2 + l1
2lc2

2 m2
2 + I2l1

2 m2 + I2lc1
2 m1+ I1lc2

2 ×

m2 + lc1
2lc2

2m1m2 − l1
2lc2

2m2
2C2

2 )2+(2 l1
2lc2

2m2
2C2S2 (l1lc2m2S2 !q1

2 + glc2m2C12 )(m2l1
2 +2 m2C2l1lc2 +m1lc1

2 +m2lc2
2 +

I1+ I2 )) / (I1I2 + l1
2lc2

2m2
2 + I2l1

2m2 + I2lc1
2 m1+ I1lc2

2 m2 + lc1
2lc2

2 m1m2 − l1
2lc2

2m2
2C2

2 )2 )+ (Δt l1lc2 m2 τ 1 S2 ) / (I1×

I2 + l1
2lc2

2m2
2 + I2l1

2m2 + I2lc1
2m1+ I1lc2

2m2+ lc1
2lc2

2 m1m2 − l1
2lc2

2m2
2 C2

2 )− (2Δt l1lc2 m2 τ 2S2 ) / (I1I2 + l1
2lc2

2 m2
2 + I2 ×

l1
2m2 + I2lc1

2m1+ I1lc2
2m2 + lc1

2lc2
2m1m2 − l1

2lc2
2m2

2C2
2 )− (2Δt l1

2lc2
2m2

2 τ 2C2S2(m2 l1
2 +2m2C2 l1lc2 +m1lc1

2+m2lc2
2 +

I1+ I2 )) / (I1I2 + l1
2lc2

2m2
2 + I2l1

2m2 +2 lc1
2m1+ I1lc2

2 m2 + lc1
2lc2

2 m1m2 − l1
2lc2

2 m2
2C2

2 )2 + (2Δt l1
2 lc2

2m2
2τ 1C2S2 (m2 ×

lc2
2 + l1m2C2lc2 + I2 )) / (I1I2 + l1

2lc2
2m2

2 + I2l1
2m2 + I2lc1

2m1+ I1lc2
2m2 + lc1

2lc2
2m1m2 − l1

2lc2
2m2

2C2
2 )2.

 

 

   

f44 =1− (Δt (2 !q1 l1lc2 m2S2 +2 !q2 l1lc2 m2S2 )(m2lc2
2 + l1 m2C2lc2 + I2 )) / (I1I2 + l1

2lc2
2m2

2 + I2l1
2m2 + I2lc1

2m1+ I1lc2
2m2 + lc1

2lc2
2 ×

m1m2 − l1
2lc2

2m2
2C2

2 )  
 

            S12 =sin(q1+q2 ) ,   S1 = sin(q1) ,   S2 = sin(q2 ) , 
  C12 =cos(q1+q2 ) , 

  C1 = cos(q1) ,
  C2 = cos(q2 ) . 

 


