Publications by Year: 2019

2019
M.Bouakoura, M. S. Nait-Said, and N. Nait-Said, “Incipient Inter-Turn Short Circuit Fault Estimation Based on a Faulty Model Observer and ANN-Method for Induction Motor Drives,” Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), vol. 12 N° 4, pp. 374-383, 2019.Abstract
A new equivalent model of the induction motor with turn to turn fault on one phase has been developed. This model has been used to establish two schemes to estimate the severity of the short circuit fault. In the first scheme, the faulty model is considered as an observer, where a correction of an error between the measured and the estimated currents is the kernel of the fault severity estimator. However, to develop the second method, the model was required only in the training process of an artificial neural network (ANN). Since stator faults have a signature on symmetrical components of phase currents, the magnitudes and angles of these components were used with the mean speed value as inputs of the ANN
A. Chaghi, “Dual Simplex Method for Optimal Coordination of DOCR’s in Distribution System with D-FACTS,” International Journal of Information Science and Technology, vol. 3 N° 3, pp. 3-9, 2019.Abstract
The problem of setting and coordination of Directional Over-Current Relay (DOCR) is a highly constrained optimization problem that has been solved as a linear programming problem. The calculation of the time dial setting (TDS) and pick up current (I P) setting of the relays is the core of the coordination. This paper calculates the TDS by choosing one of the available pick up current settings as the predetermined value, in this paper it will be set at 0.5, 1 and 1.5. The LP Dual simplex method is used to determine the optional TDS of the relays in compensated system by series FACTS devises ie Thyristor Controlled Series Capacitor (TCSC). A sample system of IEEE 33 bus distribution system is used to demonstrate the feasibility and efficiency of the developed method.
Y. Beddiaf, F. Zidani, and undefined, “New MRAS Approach for Sensorless control of IM,” 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). pp. 36-40, 2019.Abstract
In this paper we present a new approach of MRAS based on current model only. This technique aims to offsets compensating and solving problems of ordinary MRAS in low speed. Also this new approach allows us to estimate the components of the rotor flux and the rotor speed without using the voltage model. The results of the simulation and the experimental results are presented and show the effectiveness of the proposed technique.
M. Bahloul, A. N. Vargas, L. C. Alaoui, S. Drid, and M. Chaabane, “Modified Robust Model Reference Adaptive System Scheme for a Speed Sensorless Vector Control of Induction Motor,” 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). pp. 473-478, 2019.Abstract
This paper presents a robust rotor speed sensorless control strategy for induction motor. The main purpose is to overcome the instability issue for zero/low speed operating mode while considering that the rotor resistance is subject to uncertainties or variations. A Modified Model Reference Adaptive System speed estimation scheme is presented, and its sensitivity to stator resistance mismatches is investigated. The proposed approach introduces a discrete reference and adjustable models of the motor. Moreover, an adaptive discrete speed estimation scheme is synthesized on the basis of the extended Kalman filter technique. The proposed sensorless control scheme is tested using the professional Hardware simulator AMEsim (LMS). The obtained results confirm the superiority and ability of the proposed method compared to the classic Model Reference Adaptive System speed estimation scheme to guarantee a …
M. Sellali, S. Abdeddaim, A. Betka, A. Djerdir, S. Drid, and M. Tiar, “Fuzzy –Super twisting control implementation of battery/super capacitor for electric vehicles,” ISA transactions, 2019.Abstract
The present paper deals with a real-time implementation of a novel Fuzzy logic energy management strategy (EMS), applied to a battery–super capacitor hybrid energy system and associated with a permanent magnet synchronous motor (PMSM) which emulates the traction part of an electric vehicle (EV). On the sources side, the fuzzy logic supervisor acts in a smart way to permute smoothly between the various operations modes via an efficient power frequency splitting. In addition, it permits a quite regulation of both the DC bus and the super-capacitor (SC) voltages regardless of the speed profile variations to ensure an optimal power flow to the load and to keep the SC operation in a safe voltage range while providing or absorbing power in transients. On the traction side, a second order sliding mode control called ‘super-twisting’ (ST), associated with a space vector modulation (SVM) strategy is applied to ensure …
M. Sellali., A. Betka, S. Drid, A. Djerdir, L. Allaoui, and M. Tiar, “Novel control implementation for electric vehicles based on fuzzy-back stepping approach,” Energy, vol. 178, pp. 644-655, 2019.Abstract
The present paper deals with a real-time assessment of a fuzzy –backstepping based control applied to a battery-supercapacitor (SC) hybrid energy storage system (HESS). To properly emulate the behavior of an electric vehicle, the proposed topology is extended to a PMSM drive, that represents the traction part. The proposed control scheme is divided into two parts: The first part plans a fuzzy logic power management approach, to operate the system in a smart way: First, It ensures an optimal load power-sharing, focusing the operation of the involved sources in a safe mode. Second, a quite regulation of both the dc bus and the SC voltage without additional controllers. The second part proposes a back-stepping direct torque control (BS-DTC), associated to a space vector modulation (SVM) strategy, to ensure decoupled torque and flux control of the PMSM machine. The experimental results, conducted on a small …
M. Tiar, A. Betka, S. Drid, S. Abdeddaim, M. Sellali, and S. Medjmadj, “Fault-tolerant control of a smart PV-grid hybrid system,” IET Renewable Power Generation, vol. 13 N° 13, pp. 2451-2461, 2019.
A. Ghouari, H. Chaâbane, A. Chaghi, and M. Chahdi, “An Experimental Study on the Smart Home Concept with PV and Energy Management and Control Strategy Using an Open Source Platform,” Distributed Generation & Alternative Energy Journal, vol. 34 N 1, pp. 61-80, 2019.Abstract
The smart grid system is key to the new electrical network infrastructure. It takes into account the use of the new information and communication technologies (ITC) and the integration of the renewable energy power generation (photovoltaics PV, concentrated solar power CSP, wind, etc). The smart grid promises better management and control of energy sources. The application of the smart grid, especially, in Algeria allows the optimal control of the electricity demand since the latter keeps rising continuously. The use of smart grid allows the rationalization of the electricity consumption in smart homes through appliance automated control. Input energy savings result in the reduction of c emission. Herein, we present a new energy management strategy tested in an experimental smart home (SM). The implemented management approach was made possible by using a new electronic system that allowed the control of all appliances via the internet network. For this purpose, a dynamic monitoring web interface was developed under an open source platform in order to process the whole data delivered by the system. The final output of the system which consists of a balance between all types of energy involved, including CO2 gas emission, is displayed. It is only then that the user can take adequate decision and establish the priorities for rational use of the energy available.