BOURARECHE M, Nait Said R, Zidani F, Ouazraoui N.
Improving barrier and operational risk analysis (BORA) using criticality importance analysis case study: oil and gas separator. World Journal of Engineering [Internet]. 2020;17 (2) :267-282.
Publisher's VersionAbstract
Purpose
The purpose of this paper is to show the impact of operational and environmental conditions (risk influencing factors) on the component criticality of safety barriers, safety barrier performance and accidents frequency and therefore on risk levels.
Design/methodology/approach
The methodology focuses on the integration of criticality importance analysis in barrier and operational risk analysis method, abbreviated as BORA-CIA. First, the impact of risk influencing factors (RIFs) associated with basic events on safety barrier performance and accident frequency is studied, and then, a risk evaluation is performed. Finally, how unacceptable risks can be mitigated regarding risk criteria is analyzed.
Findings
In the proposed approach (BORA-CIA), the authors show how specific installation conditions influence risk levels and analyze the prioritization of components to improve safety barrier performance in oil and gas process.
Practical implications
The proposed methodology seems to be a powerful tool in risk decision. Ordering components of safety barriers taking into account RIFs allow maintenance strategies to be undertaken according to the real environment far from average data. Also, maintenance costs would be estimated adequately.
Originality/value
In this paper, an improved BORA method is developed by incorporating CIA. More precisely, the variability of criticality importance factors of components is used to analyze the prioritization of maintenance actions in an operational environment.
MCHEBILA.
Generalized markovian consideration of common cause failures in the performance assessment of safety instrumented systems. Process Safety and Environmental Protection [Internet]. 2020;2018 (141(9) : 28-36. .
Publisher's VersionAbstractAiming to provide a generalized method for assessing the performance of safety instrumented systems with a flexible and accurate consideration of the common cause failures’ contribution. This paper is devoted to the development of a direct way to generate the transition rate matrix associated with the continuous-time Markov model of any typical KooN architecture using any parametric model. Such a choice is considered after a detailed comparison of the ability of several dependability methods (e.g., fault trees, reliability block diagrams, Markov models, Bayesian networks, etc) to provide simple representations and genuine results in this context. To validate the developed method, the unavailability and the unconditional failure intensity of a wide range of configurations are quantified using the Binomial Failure Rate model and compared to those of the complete fault tree implementation.
BOURARECHE M, NAIT-SAID R, Zidani F, OUAZRAOUI N.
Improving barrier and operational risk analysis (BORA) using criticality importance analysis case study: oil and gas separator. World Journal of Engineering, Vol. ahead-of-print. 2020, [Internet]. 2020.
Publisher's VersionAbstract
Purpose
The purpose of this paper is to show the impact of operational and environmental conditions (risk influencing factors) on the component criticality of safety barriers, safety barrier performance and accidents frequency and therefore on risk levels.
Design/methodology/approach
The methodology focuses on the integration of criticality importance analysis in barrier and operational risk analysis method, abbreviated as BORA-CIA. First, the impact of risk influencing factors (RIFs) associated with basic events on safety barrier performance and accident frequency is studied, and then, a risk evaluation is performed. Finally, how unacceptable risks can be mitigated regarding risk criteria is analyzed.
Findings
In the proposed approach (BORA-CIA), the authors show how specific installation conditions influence risk levels and analyze the prioritization of components to improve safety barrier performance in oil and gas process.
Practical implications
The proposed methodology seems to be a powerful tool in risk decision. Ordering components of safety barriers taking into account RIFs allow maintenance strategies to be undertaken according to the real environment far from average data. Also, maintenance costs would be estimated adequately.
Originality/value
In this paper, an improved BORA method is developed by incorporating CIA. More precisely, the variability of criticality importance factors of components is used to analyze the prioritization of maintenance actions in an operational