hadef H, Djebabra M, Negrou B, Zied D.
Reliability degradation prediction of photovoltaic modules based on dependability methods. International Journal of Quality & Reliability Management [Internet]. 2023;40 (2) :478-495.
Publisher's VersionAbstract
Purpose
The reliability prediction is among the most important objectives for achieving overall system performance, and this prediction carried out by anticipating system performance degradation. In this context, the purpose of this research paper is to development of methodology for the photovoltaic (PV) modules' reliability prediction taking into account their future operating context.
Design/methodology/approach
The proposed methodology is framed by dependability methods, in this regard, two methods of dysfunctional analysis were used, the Failure Mode and Effects Criticality Analysis (FMECA) method is carried out for identification of the degradation modes, and the Fault Tree Analysis (FTA) method is used for identification the causes of PV modules degradation and the parameters influencing its degradation. Then, based on these parameters, accelerated tests have been used to predict the reliability of PV modules.
Findings
The application of the proposed methodology on PWX 500 PV modules' in different regions of Algeria makes it possible to predict its reliability, taking into account the future constraints on its operation. In this case, the temperature and relative humidity vary from one region to another was chosen as constraints. The results obtained from the different regions confirms the reliability provided by the designer of the Saharan cities Biskra, In Salah, Tamanraset, and affirms this value for the two Mediterranean cities of Oran and Algiers.
Originality/value
The proposed methodology is developed for the reliability prediction of the PV modules taking into account their future operating context and, the choice of different regions confirms or disproves the reliability provided by the designer of the PV modules studied. This application confirms their performance within the framework of the reliability prediction.