E. - A. Ali-Alkebsi, T. Outtas, A. Almutawakel, H. Ameddah, and T. Kanit, “
Design of mechanically compatible lattice structures cancellous bone fabricated by fused filament fabrication of Z-ABS material,”
Mechanics of Advanced Materials and Structures , 2022.
Publisher's VersionAbstract
Designing and manufacturing replacement cancellous bone structures by lattice structures and Additive Manufacturing (AM) techniques is an effective method to create lightweight orthopedic implants while ensuring that they are mechanically compatible and their osseointegration ability with the host bone. In this article, we suggest a new design based on three lattice structures from triply periodic minimal surfaces (TPMS) with a different volume porosity to replace cancellous bone based on predicting the mechanical stiffness. To predict the mechanical stiffness, the relationship between the effective modulus of elasticity and different porosity ratios of the lattice structures was determined by using three methods: i) finite element modeling (FEM) simulation, ii) Gibson and Ashby method and iii) a uniaxial compression test after manufacturing the lattice structures by using Fused Filament Fabrication (FFF) Technology. To demonstrate the efficiency of our approach, the comparison of both numerical and experimental results showed that the effect of structure difference and porosity ratio of lattice structures on the mechanical stiffness values effectively match the cancellous bone in terms of elastic modulus and porosity ratio.
R. Selloum, H. Ameddah, and M. Brioua, “
Computer Aided Inspection by Reverse Engineering for Reproduction of Gear Teeth,” in
International Conference on Advanced Materials Mechanics & Manufacturing, 2022, pp. 292–298.
Publisher's VersionAbstract
In the industry, automated inspection is important for ensuring the high quality and allows acceleration of procedures for quality control of parts or mechanical assemblies. Although significant progress has been made in precision machining of complex surfaces, precision inspection of such surfaces remains a difficult problem. Thus the problem of the conformity of the parts of complex geometry is felt more and more. Motivated by the need to increase quality and reduce costs, and supported by the progress made in the field of it as well as the automation of production which in recent years has seen a considerable evolution in all these stages: from design to control through manufacturing. Due to, we used a 3D computer aided inspection technique on a physical gear using a coordinate measuring machine equipped with a “PC-DMIS” measurement and inspection software. Our work consists in developing a procedure for inspection for reproduction of gear profile by reconstruction of a circle involute gear from a cloud point’s measurement. In order to obtain a reliable result. In this works, we design the CAD-model of the part as accurately as possible (using a mathematical model) and matched with the 3D points cloud that represents the measurement that obtained from scanner. we compare the measurement cloud points from coordinate measurement machine with the mathematical model of construction by ICP (Iterative Closest Point) methods in order to obtain a conformed result and to show the impact of the dimensional inspection and geometric.