H. Ameddah and H. Mazouz, “
IN VIVO CHARACTERIZATION OF MICRO ARCHITECTURE OF A HUMAN VERTEBRA BY MICRO-IMAGING,”
6th International Conference Integrity-Reliability-Failure 22-26 July. 2018.
Publisher's VersionAbstract
Bone, like any other material, is subject to mechanical fatigue when subjected to repetitive cyclic loading. Cyclic loading in vivo occurs either in workplaces exposed to mechanical vibration or during handling operations or during leisure and sports activities. As an example, the continuous exposure of the human body to intense global vibration can be, in the long run, cause problems of lumbar lesions due to dynamic stresses (mainly compression) in the spine. Bone and microcracks in cancellous bone. Fatigue rupture of vertebral bone is clinically and biologically important. From a clinical point of view, permanent damage and deformity, under cyclic loading, can probably weaken the vertebral body by inducing the migration of joint replacements. The mechanism of fatigue damage in cortical and trabecular bone can cause cracks and their propagation to final rupture. Microcracks observed in the vertebrae contributed to the decrease in vertebral rupture strength. In order to analyze the biomechanical behavior of the vertebrae and to assess the risk of fracture, an in vivo characterization method is applied based on the micro-MRI, aiming to focus on the evaluation the force at rupture of the vertebral body in compression. The method of extracting the shape of cancellous bone by special filters (adaptive filter, Robert's filter, etc.) will be applied, allowing it to be modelled as a slice (2D). This micro slice are created by edge configuration generation and triangulated cube configuration generation in capturing section contour points from medical image per slice, creating B-spline curve with the control points in each layer, producing solid model construction in Planar Contours method. Medical rapid prototyping models are performed in SolidWorks. Layered manufacturing techniques are used for producing parts of arbitrary complexity, which will then be modelled by finite element in fatigue.
H. Ameddah and H. Mazouz, “
BIOMEDICAL RAPID PROTOTYPING OF FREE-FORM SURFACES BY PLANAR CONTOURS METHOD,”
6th International Conference Integrity-Reliability-Failure , 22-26 July . 2018.
Publisher's VersionAbstract
In this paper, an interactive application tool has been developed for creating 3D models of dental implants and other body structures from 2D medical imaging data. 3D models are generated by using reverse engineering algorithm and planar contour method by SolidWorks developed in Visual Basic Language. The research includes transferring Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images into digital matrixes, entering digital matrixes into SolidWorks environment, building feature library for 3D reconstruction, creating medical rapid prototyping models, and performing biomedical rapid design and manufacturing. 3D reconstruction models is created by edge configuration, generation and triangulated cube configuration generation in capturing section contour points from medical image per slice, creating B-spline curve with the control points in each layer, producing solid model construction in planar contours method. Medical rapid prototyping models are performed in SolidWorks, including three views or any combination of views, for biomedical rapid designing and manufacturing according to the biomedical needs. Layered manufacturing techniques are used for producing parts of arbitrary complexity. The results of this paper are to develop image processing 3D visualization in SolidWorks Application Programming Interface (API) using Visual Basic Language. The system performance is tested using truth CT and or MRI data, and 3D physical models dental for MRP are created directly from SolidWorks. The results reveal that the accuracy of 3D reconstruction is acceptable.