E. - A. Ali-Alkebsi, T. Outtas, A. Almutawakel, H. Ameddah, and T. Kanit, “
Design of mechanically compatible lattice structures cancellous bone fabricated by fused filament fabrication of Z-ABS material,”
Mechanics of Advanced Materials and Structures , 2022.
Publisher's VersionAbstract
Designing and manufacturing replacement cancellous bone structures by lattice structures and Additive Manufacturing (AM) techniques is an effective method to create lightweight orthopedic implants while ensuring that they are mechanically compatible and their osseointegration ability with the host bone. In this article, we suggest a new design based on three lattice structures from triply periodic minimal surfaces (TPMS) with a different volume porosity to replace cancellous bone based on predicting the mechanical stiffness. To predict the mechanical stiffness, the relationship between the effective modulus of elasticity and different porosity ratios of the lattice structures was determined by using three methods: i) finite element modeling (FEM) simulation, ii) Gibson and Ashby method and iii) a uniaxial compression test after manufacturing the lattice structures by using Fused Filament Fabrication (FFF) Technology. To demonstrate the efficiency of our approach, the comparison of both numerical and experimental results showed that the effect of structure difference and porosity ratio of lattice structures on the mechanical stiffness values effectively match the cancellous bone in terms of elastic modulus and porosity ratio.