Boubiche S, Boubiche DE, Azzedine B.
Integrating Big data paradigm in WSNs. Proceedings of the International Conference on Big Data and Advanced Wireless Technologies (BDAW '16). 2016.
Abstract
WSNs consist of large number of small sensors densely deployed to monitor a phenomenon. Most of the data generated from the WSNs represent events happening at time intervals. Sometimes and according to the nature of the applications, this data stream is continuous and can reach high speeds. Therefore, adopting new techniques, platforms and tools to deal with this large amount of sensory data became necessary. Therefore, the Big Data paradigm can represent a good solution for the extraction, analysis, viewing, sharing, storage and transfer of such volume of data. This paper presents a survey on integrating Big Data tools for gathering, storing and analyzing the data generated by WSNs.
Boubiche DE, Boubiche S, Bilami A, Toral-Cruz H.
Toward Adaptive Data Aggregation Protocols in Wireless Sensor Networks. Proceedings of the International Conference on Internet of things and Cloud Computing(ICC '16). 2016.
Abstract
Data aggregation has emerged as a basic concept in wireless sensor networks. By combining data and eliminating redundancy, this concept showed its effectiveness in terms of reducing resources consumption. The data aggregation problem is not new and has been widely studied in wireless sensor networks. However, most of the proposed solutions are based on a static data aggregation scheme and do not consider the network constraints evolution such as energy bandwidth, overhead and transmission delay. To dynamically optimize the tradeoff between the data aggregation process and the network constraints, a new paradigm has been introduced recently named the feedback control system. The main idea is to adapt the data aggregation degree to the environment changes and the sensor network applications. The feedback control for data aggregation remains relatively a new research area and only few works have introduced this concept. Therefore this work points out this research field by surveying the different existing protocols.
Boubiche DE, Boubiche S, Toral-Cruz H, Pathan A-SK, Bilami A, Athmani S.
SDAW: secure data aggregation watermarking-based scheme in homogeneous WSNs. Telecommunication Systems. 2016;62 (2) :277–288.
Abstract
Redundant data retransmission problem in wireless sensor networks (WSNs) can be eliminated using the data aggregation process which combines similar data to reduce the resource-consumption and consequently, saves energy during data transmission. In the recent days, many researchers have focused on securing this paradigm despite the constraints it imposes such as the limited resources. Most of the solutions proposed to secure the data aggregation process in WSNs are essentially based on the use of encryption keys to protect data during their transmission in the network. Indeed, the key generation and distribution mechanisms involve additional computation costs and consume more of energy. Considering this, in this paper, we propose a new security mechanism to secure data aggregation in WSNs called SDAW (secure data aggregation watermarking-based scheme in homogeneous WSNs). Our mechanism aims to secure the data aggregation process while saving energy. For this, the mechanism uses a lightweight fragile watermarking technique without encryption to insure the authentication and the integrity of the sensed data while saving the energy. The links between the sensor nodes and the aggregation nodes, and also the links between the aggregation nodes and the base station are secured by using the watermarking mechanism.
Boubiche S, Boubiche DE, Bilami A, Toral-Cruz H.
An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks. Sensors. 2016;16 (4) : 525.
Abstract
Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.