Tioura A, Moumen H, Kalla H, Ait-Saidi A.
A Hybrid Protocol to Solve Authenticated Byzantine Consensus. Fundamenta Informaticae [Internet]. 2020;173 (1) :73-89.
Publisher's VersionAbstract
The consensus is a central problem of fault-tolerant distributed computing. Unfortunately, solving such a problem is impossible in asynchronous distributed systems prone to process failures. To circumvent this impossibility (known as FLP impossibility result) in a deterministic way, on top of asynchronous distributed systems enriched with additional assumptions, several protocols have been proposed. Actually, to solve the Byzantine Consensus problem, with a deterministic manner, in systems where at most t processes may exhibit a Byzantine behavior, two approaches have been investigated. The first relies on the addition of synchrony, called Timer-Based, while the second, called Time-Free, is based on the pattern of message exchange. This paper shows that both types of assumptions are not antagonist and can be combined to solve authenticated Byzantine consensus. The combined assumption considers a correct process pi, called ⋄〈t + 1〉-BW, and a set X of t+1 correct processes (including pi itself) such that, eventually, for each query broadcasted by a correct process pj of X, pj receives a response from pi ∈ X among the (n – t) first responses to that query or both links connecting pi and pj are timely. Based on this combination, a simple hybrid authenticated Byzantine consensus protocol benefiting from the best of both worlds is proposed. As a matter of fact, although numerous hybrid protocols have been designed for the consensus problem in the crash model, this is, to our knowledge, the first hybrid deterministic solution to the Byzantine consensus problem.
Benreguia B, Moumen H, Merzoug M-A.
Tracking covid-19 by tracking infectious trajectories. IEEE Access [Internet]. 2020;8 :145242 - 145255.
Publisher's VersionAbstract
Nowadays, the coronavirus pandemic has and is still causing large numbers of deaths and infected people. Although governments all over the world have taken severe measurements to slow down the virus spreading (e.g., travel restrictions, suspending all sportive, social, and economic activities, quarantines, social distancing, etc.), a lot of persons have died and a lot more are still in danger. Indeed, a recently conducted study [1] has reported that 79% of the confirmed infections in China were caused by undocumented patients who had no symptoms. In the same context, in numerous other countries, since coronavirus takes several days before the emergence of symptoms, it has also been reported that the known number of infections is not representative of the real number of infected people (the actual number is expected to be much higher). That is to say, asymptomatic patients are the main factor behind the large quick spreading of coronavirus and are also the major reason that caused governments to lose control over this critical situation. To contribute to remedying this global pandemic, in this article, we propose an IoT a investigation system that was specifically designed to spot both undocumented patients and infectious places. The goal is to help the authorities to disinfect high-contamination sites and confine persons even if they have no apparent symptoms. The proposed system also allows determining all persons who had close contact with infected or suspected patients. Consequently, rapid isolation of suspicious cases and more efficient control over any pandemic propagation can be achieved.